

Dr. Tanmoy Sarkar, an Assistant Professor and Head, holds an M.Sc. and Ph.D. in Horticulture, specializing in fruit breeding, production technology of fruit crops, and post-harvest technology of horticultural produce. With four years of research experience and nearly four years in teaching, his academic and professional contributions span germplasm conservation and crop improvement strategies. Dr. Sarkar has authored 15 research and review articles, 8 book chapters, and 9 popular science articles. He is a qualified ATEEA and UGC scholar and has been awarded the ICAR Junior Research

Fellowship in 2009 and 2013. He has also qualified ICAR-NET (Pomology) in 2016 and 2019. Dr. Sarkar has been recognized with the Topper Award (ICCE) and the Young Scientist Award (ISAO) for his outstanding academic performance and research excellence. He continues to be regarded as a distinguished contributor in horticultural sciences.

Dr. Animesh Ghosh Bag is currently serving as an Assistant Professor in the School of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal, India. He had completed his M.Sc and Ph.D. in soil science BCKV with research on arsenic contamination and soil management. With over 25 publications, 3 patents, and expertise in nutrient management and soil pollution, he has guided M.Sc. students and taught various soil science courses since 2021..

Dr. Anirneeta De holds an M.Sc. in Genetics and Plant Breeding and a Ph.D. in Agricultural Botany. She is currently working as an Assistant Professor in the School of Agriculture, Swami Vivekananda University, Barrackpore. With over six years of research experience and university-level teaching experience, her specialization includes drought stress physiology, root phenotyping, the medicinal potential of wild rice, and simulation studies. Her scholarly contributions include around nine research and review articles and three book chapters. She has also qualified in the GATE (Life Sciences, 2018) and WB SET (Life Sciences, 2020) examinations..

Dr. Suprabuddha Kundu, an Assistant Professor, holds a M.Sc. and Ph.D. in Agricultural Biotechnology, specializing in plant tissue culture, genetic engineering, germplasm conservation, secondary metabolites, and molecular markers. With four years of research experience and an additional four years and six months in reputed agricultural corporates, including Krishi Rasayan Group and Pan Seeds Pvt. Ltd. His teaching tenure of one year and seven months is complemented by an impressive scholarly output, featuring 26 research/review articles, 8 book chapters, and 2 popular articles.

The Resilient Harvest Handbook

Edited By
Tanmoy Sarkar, Animesh Ghosh Bag, Anirneeta
De, Suprabuddha Kundu

Resilient Harvest Handbook

The Resilient Harvest Handbook

Editors

Dr. Tanmoy Sarkar

Dr. Animesh Ghosh Bag

Dr. Anirneeta De

Dr. Suprabuddha Kundu

The Resilient Harvest Handbook

Editors:

Dr. Tanmoy Sarkar

Dr. Animesh Ghosh Bag

Dr. Anirneeta De

Dr. Suprabuddha Kundu

Edition: 1st

Publication year: 2025

Pages: 100

ISBN: 978-93-5469-669-5

Book DOI

Department of Agriculture, Swami Vivekananda University, Barrackpore West Bengal, India 700121

Copyright © Reserve

Printed and bound in India by ...

All rights reserved. No part of this publication can be reprinted or reproduced or transmitted in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without prior permission from the Author and the Publisher.

Price: 299/-

Preface

In an era defined by a rapidly changing climate, burgeoning populations, and the increasing scarcity of vital resources like water and arable land, the global agricultural sector stands at a critical crossroads. The age-old practices that once fed nations are now being tested by unprecedented challenges. The question is no longer merely how to increase yield, but how to do so sustainably, efficiently, and resiliently. It is in response to this pressing need that *The Resilient Harvest Handbook* is presented.

This volume is born from a collective recognition that the future of food security hinges on our ability to adapt, innovate, and harmonize agricultural practices with the environment. The title, *The Resilient Harvest*, encapsulates our core thesis: that resilience must be woven into the very fabric of modern agriculture. This resilience is not singular but multifaceted—it is genetic, as we develop crops that can withstand climatic stresses; it is technological, as we deploy artificial intelligence to optimize resource use; and it is ecological, as we nurture the complex life within our soils and harness beneficial plant-microbe interactions.

Within these pages, you will find a comprehensive exploration of this multi-pronged approach. We begin beneath the surface, examining the critical climate-soil nexus and strategies to combat soil erosion. We then journey to the field level, discussing revolutionary water-saving techniques like Alternate Wetting and Drying in rice cultivation and the potential of soilless systems like aeroponics for urban landscapes. The book delves into the genetic frontier, presenting genomics as a powerful tool for forging climate-resilient wheat, and explores the sophisticated world of clonal propagation for elite timber species. Finally, we look to the horizon, where AI-integrated irrigation systems promise a new dawn of precision and efficiency in water management.

While these topics may seem diverse, they are interconnected strands of a single solution. The health of our soil determines the efficacy of our water; the data from our sensors informs our genetic choices; the resilience of a single plant contributes to the stability of the entire system. This handbook aims to make these connections clear, demonstrating that a systemic approach is not just beneficial, but essential. We have striven to balance scientific depth with actionable insights, ensuring that the knowledge contained herein can be translated from the laboratory to the field, empowering practitioners to build robustness into every hectare.

The Resilient Harvest Handbook is designed as a vital resource for a new generation of agriculturists—students, researchers, progressive farmers, and policymakers. Each chapter is a

synthesis of current research, practical insights, and future directions, contributed by experts dedicated to forging a sustainable path forward.

Our journey towards a food-secure future is a collective one. It requires a confluence of science, policy, and on-the-ground practice. It is our sincere hope that this handbook will serve as a catalyst, providing the knowledge and inspiration needed to cultivate harvests that are not only abundant but also enduring, capable of thriving in the face of the challenges ahead.

Dr. Tanmoy Sarkar

Dr. Animesh Ghosh Bag

Dr. Anirneeta De

Dr. Suprabuddha Kundu

CONTRIBUTORS

Dr. Tanmoy Sarkar

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Sayani Bhowmick

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Mahafuzar Rahaman

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Anirneeta De

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Ria Mukhopadhyay

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Sudip Sengupta

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Parijat Bhattacharya

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Suprabuddha Kundu

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Animesh Ghosh Bag

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Tanmoy Majhi

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Rakesh Das

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Mr. Subham Dutta

Assistant Professor, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Dr. Umme Salma

Assistant Professor

Department of Agricultural Biotechnology, School of Agricultural Sciences, Sister Nivedita University, New Town, Kolkata, West Bengal 700156, India

Rumeli Dhara

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Paramita Samanta

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Aritra Deb

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Md Rayhan

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Rupsa Dutta

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Sahel Haque

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Barsha Sabud

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Madhumita Pramanik

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Aman Kumar Shaw

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Debkanta Giri

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Srijita Kolya

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Ankita Maity,

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

Richa Samanta

Student, School of Agriculture, Swami Vivekananda University, Telinipara, Barrackpore, North 24 Parganas, West Bengal 700121, India

CONTENTS

Chapter	Chapter Title and Author(s)	Page
No.		Number
1	Aeroponics: A Sustainable Approach to Urban Agriculture Animesh Ghosh Bag	1
2	Enhancing Wheat Resilience: Integrating Genetics and Genomics to Combat Climate-Induced Stresses Rumeli Dhara, Anirneeta De	10
3	Alternate Wetting and Drying in Rice Production: A Way Towards Climate Smart Agriculture Lilufa Tarafder, Dr. Mahafuzar Rahaman	18
4	Soil Erosion: Understanding Causes, Effects, and Control Strategies Paramita Samanta, Parijat Bhattacharya	26
5	Plant-Microbe Interactions: Friend or Foe? Md Rayhan, Ria Mukhopadhyay	35
6	Climate Change and Rice Yields in India: Impacts and Solutions Aritra Deb, Sayani Bhowmick	44
7	The Climate-Soil Nexus: Unraveling the Impact of Climate Change on Soil Health Rupsa Dutta, Sudip Sengupta	52
8	Clonal Propagation of Elite Teak Varieties Through Somatic Embryogenesis Suprabuddha Kundu, Umme Salma	65
9	A Comprehensive Review of AI Integrated Irrigation System: Advances, Challenges, and Future Directions Sahel Haque, Barsha Sabud, Madhumita Pramanik, Aman Kumar Shaw, Debkanta Giri, Tanmoy Majhi	73
10	Integrated Pest Management Strategies in Tomato (Solanum lycopersicum): A Sustainable Approach Srijita Kolya, Ankita Maity, Richa Samanta and Tanmoy Sarkar	86
11	Biopesticides: A Sustainable Solution for Modern Agriculture Soumabrata Dutta, Subham Dutta and Rakesh Das	93

ABOUT THE BOOK

"The Resilient Harvest Handbook" emerges as a timely and crucial contribution to the field of agricultural science, arriving at a moment when the global community faces unprecedented challenges in food production. This comprehensive volume brings together pioneering research and innovative practices that address the intersecting crises of climate change, resource scarcity, and food security. Through its meticulously organized chapters, the book presents a holistic vision for transforming agricultural systems into resilient, sustainable, and efficient enterprises capable of meeting the demands of a growing population while navigating environmental constraints.

The handbook's foundation lies in its systematic approach to agricultural resilience, beginning with the fundamental building blocks of soil health and plant genetics. The opening chapters establish the critical importance of understanding soil ecosystems in the context of climate change, exploring how temperature fluctuations, altered precipitation patterns, and extreme weather events impact soil structure, microbial communities, and nutrient cycling. This scientific foundation provides readers with essential knowledge about the complex interactions between climate variables and soil properties, setting the stage for practical interventions and management strategies.

One of the book's significant strengths is its integration of traditional agricultural wisdom with cutting-edge technological innovations. The chapters on AI-integrated irrigation systems represent a paradigm shift in water management, demonstrating how artificial intelligence and IoT technologies can optimize water usage with unprecedented precision. These systems leverage real-time data from soil moisture sensors, weather stations, and satellite imagery to create responsive irrigation models that adapt dynamically to changing environmental conditions. The research presented shows that such smart irrigation systems can reduce water consumption by 20-40% while maintaining or even improving crop yields, offering a powerful solution to the growing problem of water scarcity in agricultural regions.

The handbook delves deeply into crop-specific innovations, with substantial focus on two of the world's most crucial staple crops: rice and wheat. The research on Alternate Wetting and Drying (AWD) techniques in rice cultivation presents a compelling case for transforming water management in paddy fields. By systematically alternating between flooded and non-flooded conditions, farmers can achieve significant reductions in water usage and methane emissions while

maintaining crop productivity. The studies documented in the book demonstrate that AWD can reduce water consumption by 15-30% and decrease methane emissions by 30-70%, making it a crucial practice for sustainable rice production in water-scarce regions.

Similarly, the chapters on wheat improvement showcase remarkable advances in genomics and breeding technologies. The research explores how modern genomic tools can accelerate the development of wheat varieties with enhanced tolerance to multiple stresses, including heat, drought, and pests. By identifying key genetic markers associated with stress resilience, scientists can now breed climate-adapted varieties more efficiently, potentially reducing the breeding cycle from years to months. This genetic approach to resilience complements the management strategies discussed elsewhere in the book, creating a comprehensive framework for crop improvement.

The book's exploration of aeroponics represents another frontier in agricultural innovation, particularly relevant for urban and peri-urban agriculture. This soilless cultivation technique, which involves growing plants with their roots suspended in air and misted with nutrient-rich solutions, offers remarkable efficiencies in water and space utilization. The research presented demonstrates that aeroponic systems can reduce water usage by up to 95% compared to conventional agriculture while enabling vertical farming in urban environments. This technology not only addresses resource constraints but also creates new possibilities for local food production, reducing transportation costs and carbon footprints.

Beyond field crops, the handbook includes sophisticated research on clonal propagation of elite teak varieties through somatic embryogenesis. This work demonstrates how advanced biotechnological methods can be applied to high-value timber species, ensuring genetic uniformity and superior quality in forest plantations. The techniques described offer the potential to mass-produce genetically superior planting material, addressing the challenges of natural regeneration and genetic variability in traditional forestry practices.

What sets "The Resilient Harvest Handbook" apart is its interconnected approach to agricultural challenges. The chapters collectively demonstrate that resilience cannot be achieved through isolated interventions but requires integrated solutions that span genetic improvement, smart management practices, and technological innovation. The research on plant-microbe interactions, for instance, reveals how microbial communities in the rhizosphere can enhance plant growth, improve nutrient uptake, and provide protection against pathogens. When combined with the soil management practices discussed in other chapters, these biological approaches create synergistic

effects that enhance overall system resilience.

The handbook also addresses the crucial implementation challenges that often hinder the adoption of innovative agricultural technologies. The discussions on digital literacy, infrastructure requirements, and economic viability provide realistic assessments of the barriers facing smallholder farmers and offer practical strategies for overcoming them. By acknowledging these challenges and proposing context-specific solutions, the book moves beyond theoretical concepts to provide actionable guidance for researchers, policymakers, and practitioners.

As the global population approaches 9.7 billion by 2050, and climate change continues to alter agricultural landscapes, the insights contained in "The Resilient Harvest Handbook" become increasingly vital. The book successfully bridges the gap between scientific research and practical application, providing readers with both the theoretical understanding and the practical tools needed to transform agricultural systems. Its comprehensive coverage of topics ranging from molecular biology to field-scale management creates a unique resource that speaks to multiple audiences – from students and researchers to farmers and policymakers.

In essence, "The Resilient Harvest Handbook" represents a significant step forward in our collective understanding of sustainable agriculture. It provides not just a compilation of research findings, but a coherent vision for building agricultural systems that are productive, sustainable, and resilient in the face of environmental challenges. The knowledge contained within these pages has the potential to guide agricultural development for decades to come, offering hope and practical solutions for achieving food security in a changing world. As agricultural systems worldwide face increasing pressures, the insights and innovations documented in this handbook will undoubtedly play a crucial role in shaping the future of global food production.

ACKNOWLEDGEMENT

We extend our deepest gratitude to the honorable Vice Chancellor for unwavering support in the successful publication. Our heartfelt appreciation to the University's Registrar for enthusiastic encouragement and inspiring our team to reach new heights. We are truly honored to have received blessings and support from such an esteemed figure within the university.

It is essential to acknowledge that the realization of this publication would not have been possible without Mr. Saurav Adhikari's (Chief Operating Officer) foresight and dedication to the idea of publication. His visionary leadership and unwavering support have been pivotal to the realization of this endeavor. His insightful suggestions, encouragement, and dedication played a crucial role in shaping the direction of our publication. We deeply appreciate his foresight, which not only led to the conception of this book but also ensured its successful execution. His enthusiastic endorsement of the project from the beginning has been a source of inspiration to our tea

CHAPTER 1

Aeroponics: A Sustainable Approach to Urban Agriculture

Animesh Ghosh Bag

Department of Agriculture, School of Agriculture, Swami Vivekananda University, Barrackpore,

West Bengal, 700121

Corresponding author: ghoshbaganimesh610@gmail.com

Abstract

India's urbanization is accelerating, leading to growing challenges in food security, land scarcity, and resource management. With traditional farming methods under pressure due to decreasing arable land and water scarcity, aeroponics has emerged as a revolutionary solution. Aeroponics is a soilless farming technique that grows plants in nutrient-rich mist, ensuring high efficiency, faster growth, and optimal resource utilization. This method is particularly suitable for urban environments, where space and resources are limited, making it a viable strategy for densely populated cities like Mumbai, Bengaluru, and Delhi. Aeroponics offers numerous advantages, including reduced water consumption, pesticide-free produce, and year-round cultivation. However, it faces barriers such as high initial costs, energy dependence, and the need for technical expertise. This review highlights the principles, advantages, and challenges of aeroponics, emphasizing its potential to transform urban agriculture in India. With advancements in technology, integration of renewable energy, and government support, aeroponics can address urban food demands sustainably, fostering a resilient agricultural framework in Indian cities. This study underscores the importance of promoting awareness, policy support, and research to realize the full potential of aeroponics in India's urban landscapes.

Keywords- Aeroponics, Urban Agriculture, Sustainable Production, Resource Efficiency, Disease free plant

1. Introduction

The rapid pace of urbanization has profoundly transformed how food is produced, distributed, and consumed across the globe. Today, more than 56% of the world's population resides in urban areas, and this number is projected to reach 68% by 2050, placing unprecedented strain on cities to meet the growing food demands of their residents (United Nations, 2018). This demographic

shift presents both challenges and opportunities, particularly concerning food security, environmental sustainability, and resource management. Conventional agricultural systems, which have traditionally supplied urban populations with food, are heavily reliant on vast expanses of arable land, intensive water use, and chemical inputs such as fertilizers and pesticides. However, as urban expansion encroaches upon fertile agricultural land, and climate change exacerbates resource scarcity, these conventional methods are increasingly viewed as unsustainable, especially for cities where available land is scarce and environmental concerns are mounting. In response, urban agriculture the practice of growing food within or on the peripheries of urban areas has emerged as a promising solution to address these challenges. Urban agriculture offers multiple benefits, including enhanced food security, reduced food miles, lower carbon footprints, and improved urban resilience. However, integrating food production into densely populated urban environments requires innovative, space-efficient, and environmentally friendly techniques that can thrive despite limited land availability and harsh urban conditions. One such innovative solution gaining global attention is aeroponics. Aeroponics is a highly efficient, soilless cultivation method where plants are grown with their roots suspended in air and supplied with a fine mist of water enriched with essential nutrients. By eliminating the need for soil, aeroponics drastically reduces the risks of soil-borne diseases, optimizes water and nutrient use, and allows for the vertical stacking of crops, significantly maximizing production in compact urban spaces (Barbosa et al., 2015). This cutting-edge approach is particularly well-suited for rooftop gardens, indoor farms, and vertical agriculture systems, making it an ideal choice for modern cities seeking to reduce their environmental footprint while increasing local food production. Furthermore, aeroponics aligns with the global push toward sustainable agriculture, offering solutions to reduce resource consumption, enhance crop yields, and support food production systems that are resilient to climate change. Given its potential to revolutionize urban farming, this review delves into the scientific principles underpinning aeroponics, its numerous advantages, existing challenges, and future prospects. By critically examining the role of aeroponics in the broader context of sustainable urban agriculture, this paper aims to provide valuable insights for researchers, policymakers, and practitioners working toward building more resilient, food-secure cities.

2. Aeroponics: Principles and Working Mechanism

Aeroponics represents one of the most advanced and efficient forms of Controlled Environment Agriculture (CEA), offering a sustainable, high-yield alternative to conventional soil-based

farming. The term "aeroponics" derives from the Greek words *aero* (air) and *ponos* (labour), highlighting the system's unique approach to growing plants with their roots exposed to air rather than soil or water.

In an aeroponic system, plants are cultivated in a soil-free environment, with their roots suspended in mid-air inside a closed or semi-closed growing chamber. These exposed roots are regularly misted with a nutrient-rich solution that provides all the essential minerals and water required for healthy plant growth. Unlike hydroponic systems, where roots are continuously submerged in nutrient-laden water, aeroponics maximizes the oxygen availability to plant roots, significantly enhancing nutrient uptake efficiency and promoting faster growth rates (Stoner & Clawson, 1997).

Key Components of an Aeroponic System

A typical aeroponic setup consists of several integrated components designed to create an optimal, precisely controlled growing environment:

- > **Growth Chamber:** This is the primary structure where plants are securely suspended, allowing their roots to hang freely in a protected, enclosed space.
- > **Nutrient Reservoir:** The reservoir contains a carefully balanced nutrient solution, composed of water and essential macro- and micronutrients vital for plant development.
- ➤ **Misting Nozzles:** Strategically placed within the growth chamber, these nozzles atomize the nutrient solution into an ultra-fine mist, ensuring even and efficient distribution of nutrients to all exposed root surfaces.
- > **Pump and Timer System:** A programmable pump regulates the delivery of the nutrient mist at set intervals, preventing root dehydration while optimizing resource use.
- ➤ **Lighting System:** For indoor or vertical farming setups, high-efficiency LED lighting provides photosynthetically active radiation (PAR) tailored to plant growth needs, simulating natural sunlight conditions.

Benifits of the Aeroponic Mechanism

The aeroponic approach offers several significant advantages over conventional and other soilless growing systems:

Enhanced Root Oxygenation: By suspending roots in air, plants receive abundant oxygen, which is crucial for root respiration and overall plant vitality.

- * Efficient Nutrient and Water Use: The precise misting mechanism ensures minimal water wastage, with any excess nutrient solution collected and recirculated, making aeroponics one of the most resource-efficient cultivation methods available.
- ❖ Disease Reduction: The absence of soil eliminates many soil-borne pathogens and pests, significantly reducing the need for chemical pesticides or fungicides.
- ❖ Controlled Environment: The enclosed nature of aeroponic systems allows growers to fine-tune environmental parameters such as humidity, temperature, and nutrient concentration, providing optimal conditions for plant growth year-round.

3. Advantages of Aeroponics for Urban Agriculture

Urban agriculture presents a promising solution to food security and sustainability challenges in cities, but land scarcity, resource limitations, and environmental concerns demand highly efficient, innovative approaches. Among these, aeroponics has emerged as a particularly advantageous method, offering several benefits that align with the unique requirements of urban food production.

3.1 Space Efficiency

One of the most critical advantages of aeroponics is its exceptional space efficiency, which is vital for cities where land is at a premium. Unlike conventional farming, aeroponic systems can be designed vertically, allowing for multi-tiered, stacked plant arrangements that dramatically increase the amount of food produced per square meter of space (Kalantari et al., 2017). This vertical integration makes aeroponics ideal for use on rooftops, balconies, warehouses, and even unused urban structures, effectively transforming underutilized spaces into productive agricultural hubs.

3.2 Water Conservation

Water scarcity is a growing concern in urban and peri-urban areas, making water-efficient farming methods a necessity. Aeroponics addresses this issue by reducing water consumption by up to 95% compared to traditional soil-based agriculture (Resh, 2013). In aeroponic systems, water is delivered directly to plant roots in the form of a fine mist, minimizing evaporation and runoff. Additionally, excess water is collected and recirculated, ensuring that virtually no water is wasted, making aeroponics an ideal solution for water-stressed urban environments.

3.3 Faster Growth and Higher Yields

The unique design of aeroponic systems provides plant roots with unrestricted access to oxygen, significantly enhancing root respiration and nutrient absorption. This optimal root-zone

environment, combined with the precise and timely delivery of nutrients, promotes accelerated plant growth, shorter cultivation cycles, and potentially higher crop yields compared to conventional soil farming or even other soilless methods like hydroponics (Stoner & Clawson, 1997). Such efficiency is essential for urban agriculture, where the ability to produce more food in less time can help meet the high demand of urban populations.

3.4 Reduced Chemical Inputs

Aeroponics inherently reduces the need for chemical interventions such as pesticides, herbicides, and fungicides. By eliminating soil, a common medium for pests and diseases, and maintaining a controlled, enclosed environment, aeroponic systems significantly lower the risk of infestations and infections. As a result, growers can produce **cleaner**, **pesticide-free produce**, which is particularly attractive in urban markets where consumer demand for safe, organic, and chemical-free food is increasing.

3.5 Suitability for Urban Environments

Aeroponic systems are uniquely suited to the challenges and opportunities of urban environments. Their modular, lightweight, and scalable design allows for easy integration into various urban settings, including rooftops, basements, abandoned buildings, shipping containers, and vertical farms. Moreover, by enabling local food production close to the point of consumption, aeroponics helps reduce the environmental impact of long-distance food transportation, known as food miles, and contributes to lowering greenhouse gas emissions. This localized approach not only strengthens urban food security but also fosters community engagement and resilience.

4. Challenges and Limitations

While aeroponics holds significant promise for transforming urban agriculture, several practical and technical barriers hinder its widespread adoption. Understanding these challenges is essential to develop solutions that make aeroponic farming more accessible, reliable, and scalable, especially in resource-constrained urban settings.

4.1 High Initial Investment

One of the primary obstacles to implementing aeroponic systems is the high upfront cost associated with the technology. Establishing an aeroponic farm requires substantial investment in specialized infrastructure, including durable growth chambers, advanced misting systems, nutrient reservoirs, sensors, pumps, and high-efficiency lighting (Benke & Tomkins, 2017). These costs can be

particularly prohibitive for small-scale urban farmers, startups, or community-based initiatives with limited financial resources. Although operational costs may be lower in the long run due to resource efficiency, the initial capital requirement remains a significant barrier to entry for many urban growers.

4.2 Technical Complexity

Aeroponics is a highly sophisticated farming technique that demands precise environmental **control** to ensure optimal plant growth. Factors such as temperature, humidity, light intensity, misting intervals, and nutrient concentration must be constantly monitored and finely tuned. Even minor system malfunctions—such as a clogged nozzle, pump failure, or incorrect nutrient composition—can have immediate and detrimental effects on plant health. The need for technical expertise to install, operate, and troubleshoot aeroponic systems may deter individuals or communities lacking the necessary skills or access to training.

4.3 Energy Dependence

Many urban aeroponic farms, especially those located indoors or in vertical farming setups, rely heavily on artificial lighting, climate control, and automated monitoring systems. While these technologies enable year-round production regardless of weather or season, they also contribute to increased energy consumption. In regions where electricity costs are high or where renewable energy infrastructure is underdeveloped, the energy dependence of aeroponics can undermine its sustainability and economic viability. Balancing high productivity with reduced energy footprints remains a significant challenge.

4.4 Limited Crop Variety

Although aeroponics is highly effective for growing leafy greens, herbs, and certain types of fruiting plants, its application for larger, deep-rooted, or heavy crops remains limited (Barbosa et al., 2015). The design of aeroponic systems is better suited to lightweight crops with relatively short growth cycles. Growing root vegetables like carrots or tubers like potatoes poses technical difficulties, such as supporting plant weight and ensuring proper root development in the absence of soil. This limitation restricts crop diversity and may reduce the overall contribution of aeroponics to comprehensive urban food systems.

5. 5. Emerging Trends and Future Prospects

The field of aeroponics is evolving rapidly, driven by technological advancements and the growing global need for sustainable urban food production. Recent trends in automation, smart agriculture,

and sustainable energy solutions are not only making aeroponic systems more efficient and accessible but are also positioning them as a critical component of resilient urban food systems.

5.1 Integration with IoT and Data-Driven Agriculture

One of the most transformative trends in modern aeroponics is the integration of **the** Internet of Things (IoT) and advanced sensor technologies. Through IoT-enabled platforms, growers can achieve real-time monitoring and control of critical parameters such as nutrient concentrations, misting intervals, humidity, temperature, and overall plant health (Zhang et al., 2020).

Smart sensors continuously collect data, which is analyzed by machine learning algorithms to provide actionable insights and predictive recommendations. This level of automation reduces the risk of human error, enhances system efficiency, and ensures optimal growing conditions around the clock. Moreover, remote monitoring capabilities allow for greater scalability, as multiple aeroponic units can be managed from a centralized platform, making large-scale urban aeroponic farms more feasible.

5.2 Energy-Efficient and Sustainable Innovations

A major area of research focuses on addressing the energy demands of aeroponic systems, particularly those used in indoor and vertical farming setups. The development of energy-efficient LED lighting, capable of providing the specific light spectrum required for photosynthesis, is helping reduce electricity consumption while maintaining high crop productivity. In addition, efforts are underway to integrate renewable energy sources, such as solar panels or wind energy, to power aeroponic farms. Such innovations not only reduce operating costs but also align with broader sustainability goals, minimizing the carbon footprint of urban agriculture. Researchers are also exploring the use of bio-based nutrient solutions derived from organic waste streams or algae, further enhancing the environmental credentials of aeroponics and contributing to circular urban food systems.

5.3 Policy Support and Urban Planning Integration

Recognizing the potential of aeroponics to contribute to food security, job creation, and environmental sustainability, urban policymakers and planners are increasingly incorporating vertical farming and aeroponic systems into their development agendas.

Cities like Singapore, New York, and Tokyo have already implemented urban agriculture policies that promote the adoption of high-tech farming techniques, including aeroponics, within urban environments. These initiatives not only provide fresh, locally grown food but also create

opportunities for green jobs, community engagement, and urban greening. In the future, closer collaboration between researchers, technology developers, urban planners, and policymakers will be essential to overcome remaining barriers and scale up aeroponic farming. By leveraging technological innovation and supportive policy frameworks, aeroponics has the potential to play a central role in building more resilient, food-secure, and sustainable cities.

6. 6. Conclusion

Aeroponics represents a highly promising and innovative solution to some of the most pressing challenges facing urban food production. As cities continue to expand and the global population becomes increasingly concentrated in urban areas, the need for sustainable, efficient, and space-conscious agricultural systems has never been more urgent. Aeroponics offers precisely such a solution, enabling high-yield crop cultivation in limited spaces while significantly reducing water and nutrient consumption. The ability of aeroponics to produce pesticide-free, high-quality produce in controlled environments makes it particularly well-suited to urban settings, where concerns over food safety, environmental sustainability, and land scarcity are paramount. Moreover, its compatibility with vertical farming and indoor agriculture aligns perfectly with the spatial and logistical constraints of modern cities. However, despite its clear advantages, several technical, economic, and infrastructural challenges remain that currently limit the widespread adoption of aeroponics. High initial setup costs, system complexity, energy dependence, and limitations in crop variety continue to pose barriers, especially for small-scale growers and resource-limited urban communities.

Addressing these challenges will require a multi-faceted approach, including continued research into system optimization, development of affordable and user-friendly technologies, and integration of renewable energy solutions. Furthermore, supportive policy frameworks, financial incentives, and educational programs will be essential to encourage adoption and ensure that aeroponics becomes accessible to a broader segment of urban society. As technological advancements in automation, IoT, and data-driven agriculture continue to evolve, and as urban planners increasingly recognize the importance of local food production, aeroponics is well-positioned to play a central role in building resilient, self-sufficient, and environmentally sustainable urban food systems. In conclusion, while challenges persist, the potential of aeroponics to contribute to food security, climate resilience, and urban sustainability is undeniable. With the right investments, policy support, and public awareness, aeroponics can be scaled up to help cities

meet the growing demand for nutritious, locally produced food while minimizing environmental impact a vital step toward creating greener, healthier, and more sustainable urban communities.

References

Barbosa, G. L., Gadelha, F. D. A., Kublik, N., Proctor, A., Reichelm, L., Weissinger, E., ... & Halden, R. U. (2015). Comparison of land, water, and energy requirements of lettuce grown using hydroponic vs. conventional agricultural methods. *International Journal of Environmental Research and Public Health*, 12(6), 6879–6891. https://doi.org/10.3390/ijerph120606879

Benke, K., & Tomkins, B. (2017). Future food-production systems: Vertical farming and controlled-environment agriculture. *Sustainability: Science, Practice and Policy*, 13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054

Kalantari, F., Tahir, O. M., Joni, R. A., & Fatemi, E. (2017). Opportunities and challenges in sustainability of vertical farming: A review. *Journal of Landscape Ecology*, 11(1), 35–60. https://doi.org/10.1515/jlecol-2017-0016

Resh, H. M. (2013). *Hydroponic food production: A definitive guidebook for the advanced home gardener and the commercial hydroponic grower* (7th ed.). CRC Press.

Stoner, R. J., & Clawson, J. (1997). Aeroponics: Optimized plant production in controlled environments. *Acta Horticulturae*, 481, 693–700. https://doi.org/10.17660/ActaHortic.1999.481.96

United Nations. (2018). 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html

Zhang, W., He, Y., & Wang, Z. (2020). Smart agriculture: Development status, challenges, and future prospects. *Journal of Agricultural Resources and Environment*, 37(4), 637–645.

CHAPTER 2

Enhancing Wheat Resilience: Integrating Genetics and Genomics to Combat Climate-Induced Stresses

Rumeli Dhara¹, Anirneeta De^{1*}

School of Agriculture, Swami Vivekananda University, Barrack pore, West Bengal-700121

Wheat (*Triticum aestivum* L.) is a vital crop for global food security and has shaped modern society's development. However, climate change poses a serious threat to wheat production by increasing the impact of various challenges, such as pests, diseases, and harsh weather conditions. These challenges often occur together or in sequence during the wheat growth cycle, making them harder to manage. While many studies have focused on individual stresses affecting wheat, less attention has been given to how these stresses interact. This lack of understanding has slowed the adoption of practical solutions to help farmers adapt to climate change. To close this gap, researchers suggest combining large amounts of data from breeding programs with modern, affordable genomic tools. These tools can predict how wheat will perform under different climate conditions. The key idea is to develop future wheat varieties, or "ideotypes," that are better suited to handle multiple stresses. By understanding the genetic and physiological processes triggered by these stresses, scientists can identify traits that improve wheat growth and yield in challenging environments. By focusing on the combined effects of different stresses and designing climate-resilient wheat varieties, this approach aims to support farmers in maintaining stable wheat production despite climate change, ensuring global food security for the future.

Keywords: Climate-Resilient Wheat, Biotic and Abiotic Stress, Wheat Genetics and Genomics

1. Introduction

Wheat (*Triticum aestivum* L.) is a cornerstone of global food security, supplying approximately 20% of the calories and proteins consumed worldwide (Shewry & Hey, 2015). Its adaptability across diverse agro-ecological zones has enabled its cultivation in more than 120 countries, making it one of the most widely traded cereals globally. However, climate change poses severe challenges to wheat production by altering temperature regimes, rainfall patterns, and the prevalence of pests and diseases (Deutsch et al., 2018). Global models predict that even a 2°C increase in mean temperature could drastically affect wheat yield and grain quality due to overlapping biotic and

^{*}Corresponding author: anirneetad@svu.ac.in

abiotic stressors (Langridge & Reynolds, 2021).

Traditionally, wheat improvement programs have focused on individual stress factors, but field conditions often involve simultaneous or sequential occurrences of heat, drought, nutrient deficiency, and biotic attacks such as rusts or aphid infestations. These combined stressors interact in complex ways, often amplifying the damage compared to single stresses (Suzuki et al., 2014). Understanding these interactions at physiological, molecular, and genetic levels is therefore critical for designing future wheat ideotypes that can thrive under multiple constraints (Fradgley et al., 2022).

This paper explores the multifaceted interactions between biotic and abiotic stresses, highlighting their cumulative impacts on yield and quality. It also reviews current advancements in omics-based breeding, modeling approaches, and stress physiology, which can guide the development of resilient wheat varieties suited to future climate scenarios.

2. Interacting Biotic and Abiotic Stresses in Wheat

Wheat experiences a wide spectrum of stressors during its life cycle, including drought, heat waves, nutrient limitations, and pest/disease outbreaks. The interplay between these factors often results in synergistic or antagonistic effects on plant metabolism, leading to yield losses greater than those caused by individual stresses (Atkinson & Urwin, 2012; Tricker et al., 2018).

2.1 Heat and Drought Interactions

Drought and heat are the most frequent co-occurring stresses in many wheat-growing regions. Heat stress alone can disrupt photosystem II activity, denature proteins, and accelerate senescence, while drought limits stomatal conductance and carbon fixation (Barnabás et al., 2008). When combined, they exacerbate osmotic stress, increase reactive oxygen species (ROS) production, and reduce photosynthetic pigment content, ultimately decreasing biomass and grain filling (Marček et al., 2019).

2.2 Nutrient Deficiency and Abiotic Stresses

Low nitrogen (N) availability is a common constraint in wheat production, and its negative effects are amplified under drought and heat stress. Nitrogen deficiency reduces Rubisco content, light-harvesting complexes, and key enzymes required for photosynthesis (Michaletti et al., 2018). Simultaneously, drought stress depletes soil microbiota that facilitate nitrogen mineralization, leading to impaired floret development and source-sink imbalances (Curci et al., 2017).

2.3 Pest and Pathogen Dynamics Under Climate Change

Biotic stressors such as aphids, rust fungi, and Fusarium head blight interact with abiotic stresses in unpredictable ways. For example, drought-stressed wheat plants often exhibit altered phloem composition, which can influence aphid feeding behavior. Rising temperatures and elevated CO₂ levels may also increase pest survival rates and geographical distribution (Skendžić et al., 2021).

3. Understanding Interacting Stresses: From Lab to Field

The transition from controlled laboratory experiments to real-world field conditions remains a major challenge in wheat stress research. Laboratory studies often investigate single stress factors under simplified conditions; however, field environments expose crops to complex combinations of abiotic and biotic stresses, which can fluctuate across seasons and growth stages (Poorter et al., 2016). Consequently, laboratory findings may not always capture the multifaceted interactions that occur in farmers' fields, limiting their applicability in breeding programs (Campos, 2021).

3.1 Harnessing Big Data and Environics

Recent advances in environics, which integrates high-resolution environmental datasets such as solar radiation, air temperature, and humidity, have improved the ability to model crop performance under variable climates (N). By combining these environmental covariates with crop modeling, researchers can identify genotype \times environment (G \times E) interactions and predict plant responses more accurately. This approach helps breeders define target environments for future ideotypes that are optimized for resilience under multiple stress scenarios (Costa-Neto et al., 2021).

3.2 Phenomics and Remote Sensing

High-throughput phenotyping (HTP) and remote sensing technologies provide real-time data on crop traits such as canopy temperature, chlorophyll fluorescence, and stomatal conductance (gs), which are crucial indicators of stress tolerance (Robles-Zazueta et al., 2021). The integration of drone-mounted sensors, hyperspectral imaging, and LiDAR enables the monitoring of large breeding populations across diverse field conditions. When combined with machine learning, these phenomics tools have demonstrated predictive accuracies of up to 97% for gs and 69% for radiation use efficiency (RUE) (Robles-Zazueta et al., 2022).

3.3 Omics-Driven Approaches

Advances in genomics, transcriptomics, proteomics, and metabolomics have revolutionized the understanding of stress response pathways. For instance, metabolomic profiling can identify stress-responsive metabolites, such as sugars and amino acids, which are linked to osmotic adjustment and oxidative stress mitigation (Razzaq et al., 2021). Similarly, transcriptomics can uncover

temporal gene expression patterns during combined heat and drought stress, while proteomics provides insights into protein-level modifications and post-translational regulation (Feussner & Polle, 2015).

3.4 Machine Learning and Predictive Modeling

Machine learning algorithms are increasingly being used to integrate phenotypic and genotypic data with environmental parameters, allowing researchers to predict the performance of unobserved genotypes under multiple stress conditions. Models based on Bayesian statistics, kernel methods, and deep neural networks are capable of capturing non-linear interactions between genetic and environmental factors (Crossa et al., 2021). These models not only enhance breeding efficiency but also reduce the time required for field evaluations—by as much as 27-fold for agronomic traits and 40-fold for photosynthetic traits (Robles-Zazueta et al., 2021).

4. Future Perspectives

Climate change continues to impose unprecedented challenges on wheat production, necessitating the development of resilient cropping systems and improved wheat varieties capable of thriving under multifactorial stress environments. The future of wheat research lies in integrating genetics, physiology, big data, and advanced agronomic management to achieve sustainable yields despite fluctuating conditions (Langridge & Reynolds, 2021).

4.1 Breeding Climate-Resilient Wheat

Traditional breeding has delivered significant yield gains, but its ability to cope with simultaneous heat, drought, and disease pressures remains limited. Genomic selection (GS), coupled with marker-assisted selection (MAS), has emerged as a powerful tool for accelerating genetic improvement. Through high-density genotyping platforms, breeders can identify quantitative trait loci (QTLs) linked to stress tolerance traits such as grain filling under heat or root architecture under drought (Crossa et al., 2021).

The introgression of alleles from wild relatives of wheat, such as Aegilops tauschii and Triticum dicoccoides, offers a reservoir of genetic diversity for stress resilience (Placido et al., 2013). The integration of genomic tools with speed breeding techniques further reduces the breeding cycle, enabling rapid development of heat- and drought-tolerant lines (Watson et al., 2018).

4.2 Systems Biology and Multi-Omics Integration

Future strategies will involve multi-omics integration, combining genomics, transcriptomics,

proteomics, and metabolomics to dissect stress tolerance mechanisms at multiple biological layers (Feussner & Polle, 2015). Systems biology approaches will help identify regulatory gene networks, signaling pathways, and key metabolic nodes that govern plant adaptation to combined stresses. Machine learning-based predictive modeling will be used to integrate omics datasets with field-level phenotyping, enabling the identification of "predictive biomarkers" for stress resilience (Razzaq et al., 2021). This will guide breeders in selecting parental lines with optimal combinations of physiological and molecular traits.

4.3 Digital Agriculture and Precision Management

The adoption of precision agriculture tools, such as soil moisture sensors, UAV-based remote sensing, and AI-driven decision-support systems, will enable dynamic stress monitoring and site-specific management (Sharma et al., 2022). This approach will optimize irrigation, nutrient delivery, and disease management, thereby reducing crop vulnerability to heat and drought.

4.4 Policy and Collaborative Frameworks

Achieving global food security under climate stress requires collaborative breeding networks, such as those supported by CIMMYT and ICAR, to share germplasm, phenotyping facilities, and genomic resources (Reynolds et al., 2020). Policymakers must also incentivize the adoption of stress-resilient cultivars and invest in digital breeding pipelines.

Conclusion

A multi-pronged strategy that combines climate-smart breeding, high-throughput phenotyping, omics-driven insights, and precision management is the way forward. By leveraging cutting-edge technologies and fostering international collaboration, the wheat sector can not only mitigate the impacts of climate change but also enhance yield stability and nutritional quality.

References:

Atkinson, N. J., & Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from genes to the field. *Journal of experimental botany*, 63(10), 3523-3543.

Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. *Plant, cell & environment*, 31(1), 11-38.

Campos, M. D. S. B., Buglia, S., Colombo, C. S. S. D. S., Buchler, R. D. D., Brito, A. S. X. D., Mizzaci, C. C., ... & Mastrocola, L. E. (2021). Posicionamento sobre Exercícios Físicos na Gestação e no Pós-Parto–2021. *Arquivos Brasileiros de Cardiologia*, 117, 160-180.

Costa-Neto, G., Crossa, J., & Fritsche-Neto, R. (2021). Enviromic assembly increases accuracy

and reduces costs of the genomic prediction for yield plasticity in maize. Frontiers in Plant Science, 12, 717552.

Crossa, J., et al. (2021). Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science, 26(7), 692–711.

Curci, G., Alyuz, U., Barò, R., Bianconi, R., Bieser, J., Christensen, J. H., ... & Galmarini, S. (2019). Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions. *Atmospheric chemistry and physics*, *19*(1), 181-204.

Deutsch, C. A., Tewksbury, J. J., Tigchelaar, M., Battisti, D. S., Merrill, S. C., Huey, R. B., & Naylor, R. L. (2018). Increase in crop losses to insect pests in a warming climate. *Science*, *361*(6405), 916-919.

Feussner, I., & Polle, A. (2015). What the transcriptome does not tell—proteomics and metabolomics are closer to the plants' patho-phenotype. Current Opinion in Plant Biology, 26, 26–31.

Fradgley, N. S., Bacon, J., Bentley, A. R., Costa-Neto, G., Cottrell, A., Crossa, J., ... & Gardner, K. A. (2023). Prediction of near-term climate change impacts on UK wheat quality and the potential for adaptation through plant breeding. *Global Change Biology*, *29*(5), 1296-1313.

Langridge, P., & Reynolds, M. P. (2021). Breeding for stress tolerance: Harnessing the adaptation pathways of crops. Nature Reviews Genetics, 22, 411–429.

Marček, T., Hamow, K. A., Vegh, B., Janda, T., & Darko, E. (2019). Metabolic response to drought in six winter wheat genotypes. *PLoS one*, *14*(2), e0212411.

Michaletti, A., Naghavi, M. R., Toorchi, M., Zolla, L., & Rinalducci, S. (2018). Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. *Scientific reports*, 8(1), 5710.

Placido, D. F., et al. (2013). Introgression of novel traits from wild wheat relatives. Plant Science, 212, 57–69.

Poorter, H., Fiorani, F., Pieruschka, R., Wojciechowski, T., van der Putten, W. H., Kleyer, M., ... & Postma, J. (2016). Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. *New Phytologist*, *212*(4), 838-855.

Razzaq, A., et al. (2021). Multi-omics approaches to improve wheat tolerance to abiotic stresses. Frontiers in Plant Science, 12, 667801.

Reynolds, M., et al. (2020). Harnessing translational research in wheat physiology to cope with

climate change. Frontiers in Plant Science, 11, 623.

Robles-Zazueta, C. A., Molero, G., Pinto, F., Foulkes, M. J., Reynolds, M. P., & Murchie, E. H. (2021). Field-based remote sensing models predict radiation use efficiency in wheat. *Journal of Experimental Botany*, 72(10), 3756-3773.

Sharma, R., et al. (2022). Digital and precision agriculture for climate-smart wheat production. Journal of Agronomy and Crop Science, 208(1), 1–15.

Shewry, P. R., & Hey, S. J. (2015). The contribution of wheat to human diet and health. *Food and energy security*, 4(3), 178-202.

Skendžić, S., Zovko, M., Živković, I. P., Lešić, V., & Lemić, D. (2021). The impact of climate change on agricultural insect pests. *Insects*, 12(5), 440.

Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. *New Phytologist*, 203(1), 32-43.

Tricker, P. J., ElHabti, A., Schmidt, J., & Fleury, D. (2018). The physiological and genetic basis of combined drought and heat tolerance in wheat. *Journal of experimental botany*, 69(13), 3195-3210.

Watson, A., et al. (2018). Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants, 4, 23–29.

CHAPTER 3

Alternate wetting and drying in rice production a way towards climate smart agriculture

Lilufa Tarafder, Dr. Mahafuzar Rahaman¹

¹Swami Vivekananda University, Barrackpore

*Corresponding author email: mahafuzarr@svu.ac.in

Abstract:

The sustainability of traditional irrigated rice production is under threat from the compounding impacts of climate change induced rainfall variability, declining groundwater levels, and inefficient water use practices. The rice (*Oryza sativa L.*) cultivation is crucial for global food security, yet it accounts for a considerable proportion of agricultural greenhouse gas emissions. The Alternate Wetting and Drying (AWD) in rice fields can effectively reduce methane (CH4) emissions and water-saving strategy that allows farmers to optimize grain yields and economic returns from rice production while minimizing irrigation water application in command areas. Alternate Wetting and Drying (AWD) significantly reduced methane emissions by 60-70% during the growing season, while keeping nitrous oxide emissions low. AWD also decreased the overall global warming impact by 57-74% and reduced arsenic levels in grain by 59-65% (Gabriel *et.al* 2016). The Alternate Wetting and Drying (AWD) system is a cost-effective and eco-friendly method, but it's adoption is limited in major rice-producing areas, possibly due to complex agricultural and socioeconomic issues, and lack of support from institutions.

Keywords: Greenhouse gases emission, Climate change, Water-saving, Global warming, Arsenic.

Introduction

The global food demand is rising due to a growing population, and ensuring food security is a significant challenge. Traditionally, rice is grown under continuously flooded (CF) conditions, which requires substantial water resources. resource-conservation approach that minimizes harm to ecosystem health (Godfray and Garnett, 2014). The traditional method of rice production, which involves transplanting 30–35-day old seedlings from a nursery to a field, is facing challenges due to dwindling water resources. This conventional approach requires significant water for flooding the fields, straining local water supplies (Madhusoodhanan et al., 2016). This requires shifting from the traditional continuously flooded (CF) system to a more sustainable implementation of the Alternate Wetting and Drying (AWD) system has led to a substantial reduction in global warming potential (GWP) and water usage (Li et al., 2011; Mazza et al., 2016). Research has shown mixed results regarding the impact of the Alternate Wetting and Drying (AWD) system on crop yields compared to the Continuously Flooded (CF) system. Some studies have reported increased yields (Yang et al., 2004; Liang et al., 2016; Jabran et al., 2016), while others have found decreased yields (Oliver et al., 2008; Lagomarsino et al., 2016; Chu et al., 2018). However, research suggests that rice can be successfully cultivated with less water. As natural resources like land and water become increasingly scarce, finding sustainable solutions for food production is crucial (Godfray et al.,2010; Wada et al.,2013; Alauddin et al.,2020). Rice (Oryza sativa L.) is the primary crop that sustains over 50% of the global population (Muthayya et al., 2014). In Asia, rice is a staple food, providing 35-60% of the daily caloric intake, making it a vital component of food security in the region (Fageria, 2007; Kush, 2013). Despite extensive research on Alternate Wetting and Drying (AWD) focusing on grain yield, water use efficiency, nitrogen use efficiency (NUE), and greenhouse gas (GHG) emissions, a comprehensive understanding of its impact on soil health, crop quality, and environmental sustainability is still missing. This review bridges the gap by providing an up-to-date synthesis of existing data on AWD's effects on various soil properties, crop growth stages, rice yield and quality, heavy metal accumulation, and GHG emissions in paddy fields, offering a thorough evaluation of AWD as a viable alternative to traditional flooded rice systems.

Alternate Wetting and Drying (AWD)

In the Alternate Wetting and Drying (AWD) method, rice fields experience cycles of flooding and drying, replacing the traditional practice of continuous flooding throughout the growing season (Zhang et al., 2009). Though the AWD irrigation technique has many potential advantages, farmers find it difficult to implement in practice because they cannot determine the optimal time for irrigation application without creating basic irrigation indices. Utilizing a field water polyvinyl chloride (PVC) tube as a tool to track the field water level, IRRI and the Institute for Agro-Environmental Science (NIAES), Japan, developed a set of simple guidelines for AWD application (Minamikawa et al., 2015). The AWD is made up of three fundamental components: During the first two weeks following seeding or transplanting, shallow flooding is used to help seedlings recover from transplant shock and prevent the emergence of weeds (Liang et al., 2013); from panicle initiation (PI) to the end of flowering, a thin layer of standing water (2–3 cm) is applied because this time frame is particularly sensitive to water deficit; and during all other growth periods, the AWD cycle is implemented (Bouman et al., 2006; Yang et al., 2017). By regulating the water supply and allowing for the interruption of irrigation (total water input), the AWD system guarantees the supply of rice's physiological water demand. Wetness and dryness cycles occur frequently in AWD fields and are closely associated with a number of factors, including soil water potential, plant hydration status, soil texture, and water elements (Bouman, 2007; Shao et al., 2014). IRRI developed a field water tube that can be used to monitor the water level beneath the soil surface. Bamboo, PVC pipe, tin cans, or even plastic bottles with a diameter of 10 to 20 cm can all be used to create half-perforated field water tubes. Farmers observe for the perched water table to fall to a particular level below the soil surface as a result of evapotranspiration, drainage, and percolation after applying irrigation to a depth of roughly 5 cm. Fields are re-irrigated when the field water level (FWL) falls 15 cm (in water pipes) below the soil surface; flooding at this FWL is referred to as "safe AWD" (Bouman et al., 2006). The threshold level at "safe AWD" either maintains or increases yield while saving 15–30% of water because plant roots can still get enough water from the saturated soil and perched groundwater for growth and development. The "safe AWD" technique is advised for use by farms during vegetative development (tillering to PI) as well as during the grain loading stage (Lampayan et al., 2015a). The AWD technique is used in both transplanted (Sandhu et al., 2017; Kar et al., 2018; Ishfaq et al., 2020) and DSR systems (Carrijo et al., 2017; Ishfaq et al., 2020). Using water-saving techniques like AWD or mid drainage reduces the water input and is believed to negatively impact rice development, physiology, and

yield in both water-intensive [conventional flooded puddled transplanted rice system (CF-TRP)] and water-saving systems (DSR). However, according to Misra (2012) and Jabran et al. (2017), rice plant growth is unaffected by moving from CF to unsaturated conditions (AWD or aerobic rice). Lastly, overall, AWD reduces water inputs by 26% when compared to CF.

1. AWD performance and soil characteristics:

Soil texture, pH, organic carbon, microorganisms, and climate all affect alternate wetting and drying cycles and how they affect crop performance and yields (Sandhu et al., 2017; Norton et al., 2017). Due to mineralization, changes in soil aeration, soil water levels, and nutrient availability result from the transition from CF to aerobic soil (AWD) conditions (Timsina and Connor, 2001; Ye et al., 2013; Fig. 4). According to Tan et al. (2013), AWD practices enhance the air exchange between the atmosphere and soil, which promotes the mineralization of soil organic matter and prevents soil N immobilization because of an adequate oxygen supply. Compared to CF, AWD irrigation can cut the amount of water needed for irrigation by 50%, but it may also raise the electrical conductivity (EC) value of field water (Nhan et al., 2016). Increased mineralization and dissolved ion concentration, which are lower in CF conditions because of the dilution effect, may be the cause of increased soil EC (Adviento-Borbe et al., 2006).

Growth of roots and shoots:

Root and shoot growth and development are enhanced by the AWD system (Yang and Zhang, 2010; Thakur et al., 2011). When the AWD approach is applied in areas with an impermeable soil layer, root proliferation may be limited, potentially limiting the growth of plant roots and shoots (Yang et al., 2004). A subsurface drainage system could improve the oxygen delivery to roots in such circumstances (Kerbiriou et al., 2013). When mild-AWD conditions were applied in conjunction with regular nitrogenous fertilizer applications, root and shoot growth, root density, and biomass all increased (Kato and Okami, 2010; Mishra and Salokhe, 2010; Pascual and Wang, 2).

Grain filling and the creation of yield:

While late flowering spikelets show notable variations in grain phytohormonal concentrations under AWD irrigation technique, early flowering spikelets show comparable grain phytohormonal concentrations and rates of grain filling in AWD and CF (Zhang et al., 2010a). The concentration of cytokinin (grain) fluctuated with AWD cycles and the intensity of soil drying, while the concentration of ABA (in grain) was higher under AWD during the grain filling stage

(Zhang et al., 2010a; Yang et al., 2017; Mote et al., 2018). Because of the actions of enzymes involved in the conversion of sucrose to starch and increased photosynthetic rate, changing phytohormonal signalling affects not only leaf gas exchange but also grain filling rate (Zhang et al., 2012a; Yang et al., 2017; Jabran et al., 2017; Chu et al., 2018). Furthermore, the increased ABA level during the grain filling stage of mild soil drying may promote the remobilization of assimilates (pre-stored in leaves and stem). Because the enzymes in the stem (SuS) and the rice kernel's phosphate synthase, StS, ADPG, and SBE enzymes were more active throughout the drying cycle of AWD, higher ABA concentrations facilitated the transfer of photosynthates toward developing grains (Zhang et al., 2009; Chen et al., 2016). Sucrose phosphate synthase (SPS) is thought to be the enzyme responsible for the resynthesis of sucrose (Wardlaw and Willenbrink, 1994; Chen et al., 2016). SPS activity rises in response to an increase in ABA concentration during mild-AWD soil drying (Chen et al., 2016).

Grain quality and the buildup of heavy metals:

When moving from traditional rice cultivation methods to water-saving ones, the grain quality may change (Sarwar et al., 2016). Aside from the CF system's high-water requirements, heavy metal accumulation in grains, such as (Zhao et al., 2010; Carrijo et al., 2019) and Hg (Rothenberg et al., 2016), lowers grain quality. While severe-AWD irrigation decreased grain protein contents, safe-AWD irrigation boosted grain protein contents, milling recovery, and grain production (Darzi-Naftchali et al., 2017).

Reference

Alauddun, M., Sarker, M.A.R., Islam, Z., Tisdell, C.,2020. Adoption of alternate wetting and drying (AWD) irrigation as a water-saving technology in Bangladesh: Economic and environmental considerations. Land Use polic. 91,104430.

- Fageria, N.K.,2007. Yield physiology of rice. J. Plant. Nut. 30, 843-879. https://doi.org/10.1080/15226510701374831.
- Muthayy, S., Sugimoto, J.D., Montgomery, S., Marberly, G.F., 2014. An overview of global rice production, supply, trade and consumption. Ann. New York Academy Sci. 1324, 7–14. https://doi.org/10.1111/nyas.12540.
- Madhusoodhanan, C.G., Sreeja, K.G., Eldho, T.I., 2016. Climate change impact assessments on the water resources of India under extensive human interventions. Ambio. 45, 725–741. https://doi.org/10.1007/s13280-016-0784-7.
- Godfray, H.C.J., Garnett, T., 2014. Food security and sustainable intensification. Philos. Trans. R. Soc. B. Biol. Sci. 369, 20120273. https://doi.org/10.1098/rstb.2012.0273.
- Li, X., Yuan, W., Xu, H., Cai, Z., Yagi, K., 2011. Effect of timing and duration of midseason aeration on CH4 and N2O emissions from irrigated lowland rice paddies in China. Nutr. Cycl. Agroecosyst. 91, 293–305. https://doi.org/10.1007/s10705-011-9462-0.
- Yang, C., Yang, L., Yang, Y., Ouyang, Z., 2004. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manage. 70, 67–81. https://doi.org/10.1016/j.agwat.2004.05.003.
- Liang, K., Zhong, X., Huang, N., Lampayan, R.M., Pan, J., Tian, K., 2016. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric. Water Manage. 163, 319–331. https://doi.org/10.1016/j.agwat.2015.10.015.
- Jabran, K., Hussain, M., Fahad, S., Farooq, M., Bajwa, A.A., Alharrby, H., Nasim, W.,2016. Economic assessment of different mulches in conventional and water-saving rice production systems. Environ. Sci. Pollut. Res. 23, 9156–9163. https://doi.org/10.1007/s11356-016-6162-y.
- Oliver, M.M.H., Talukder, M.S.U., Ahmed, M., 2008. Alternate wetting and drying irrigation for rice cultivation. J. Bangladesh Agril. Univ. 6, 409–414.
- Lagomarsino, A., Agnelli, A.E., Linquist, B., Adviento-Borbe, M.A., Agnelli, A., Gavina, G., Ravaglia, S., Ferrara, R.M., 2016. Alternate wetting and drying of rice reduced CH4 emissions but triggered N2O peaks in a clayey soil of central Italy. Pedosphere 26, 533–548. https://doi.org/10.1016/S1002-0160(15)60063-7.
- Chu, G., Chen, T., Chen, S., Xu, C., Zhang, X., Wang, D., 2018. The effect of alternate wetting and severe drying irrigation on grain yield and water use efficiency of Indica japonica hybrid rice (Oryza sativa L.). Food Energy Sec. https://doi.org/10.1002/fes3.133).
- Zhang, H., Xue, Y., Wang, Z., Yang, J., Zhang, J., 2009. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 49, 2246-2260. https://doi.org/10.2135/cropsci2009.02.0099.
- Minamikawa, K., Tokida, T., Sudo, S., Padre, A., Yagi, K., 2015. Guidelines for Measuring CH4 and N2O Emissions From Rice Paddies by a Manually Operated Closed Chamber Method. National Institute for Agro-Environmental Science, Tsukuba, Japan. Mishra, A., 2012. Intermittent irrigation enhances morphological and physiological efficiency of rice plants. Agricul. (Pol'nohospodárstvo) 58, 121–130.
- Liang, K., Zhong, X., Huang, N., Lampayan, R.M., Pan, J., Tian, K., 2016. Grain yield, water productivity and CH4 emission of irrigated rice in response to water management in south China. Agric. Water Manage. 163, 319–331. https://doi.org/10.1016/j.agwat.2015.10.015.
- Yang, J., Zhou, Q., Zhang, J., 2017. Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission. Crop J. 5, 151–158. https://doi.org/10.1016/j.cj.2016.06.002.

- Bouman, B.A.M., 2007. Water Management in Irrigated Rice: Coping With Water Scarcity. International Rice Research Institute, Los Baños, Philippines pp. 54.
- Shao, C.G., Deng, S., Liu, N., Yu, E.S., Wang, H.M., She, L.D., 2014. Effects of controlled irrigation and drainage growth, grain yield and water use in paddy rice. Eur. J. Agron. 53, 1–9. https://doi.org/10.1016/j.eja.2013.10.005.
- Bouman, B.A.M., Humphreys, E., Tuong, T.P., Barker, R., 2006. Rice and water. Adv. Agron. 92, 187–237. https://hdl.handle.net/10568/17346.
- Lampayan, R.M., Samoy-Pascual, K.C., Sibayan, E.B., Ella, V.B., Jayag, O.P., Cabangon, R.J., Bouman, B.A.M., 2015a. Effects of alternate wetting and drying (AWD) threshold level and plant seedling age on crop performance, water input, and water productivity of transplanted rice in Central Luzon. Philippines. Paddy Water Environ. 13, 215–227. https://doi.org/10.1007/s10333-014-0423-5.
- Sandhu, N., Subedi, S.R., Yadaw, R.B., Chaudhary, B., Prasai, H., Iftekharuddaula, K., Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., Lopena, V., Pablico, P., Maturan, P.C., Cruz, M.T.S., Raman, K.A., Collard, B., Kumar, A., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879–1891. https://doi.org/10.3389/fpls.2017.01879.
- Carrijo, D.R., Lundy, M.E., Linquist, B.A., 2017. Rice yields and water use under alternate wetting and drying irrigation: a meta-analysis. Field Crops Res. 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002.
- Sandhu, N., Subedi, S.R., Yadaw, R.B., Chaudhary, B., Prasai, H., Iftekharuddaula, K., Thanak, T., Thun, V., Battan, K.R., Ram, M., Venkateshwarlu, C., Lopena, V., Pablico, P., Maturan, P.C., Cruz, M.T.S., Raman, K.A., Collard, B., Kumar, A., 2017. Root traits enhancing rice grain yield under alternate wetting and drying condition. Front. Plant Sci. 8, 1879–1891. https://doi.org/10.3389/fpls.2017.01879.
- Timsina, J., Connor, D.J., 2001. Productivity and management of rice-wheat cropping system: issues and challenges. Field Crop Res. 69, 93–132. https://doi.org/10.1016/ S0378-4290(0).
- Nhan, P.P., Hoa, L.V., Qui, C.N., Huy, N.X., Hữut, T., Macdonald, B.C., Tường, T., 2016. Increasing profitability and water use efficiency of triple rice crop production in the Mekong Delta, Vietnam. J. Agric. Sci. 154, 1015–1025. https://doi.org/10.1017/S0021859615000.
- Adviento-Borbe, M.A., Doran, J.W., Drijber, R.A., Dobermann, A., 2006. Soil electrical conductivity and water content affect nitrous oxide and carbon dioxide emissions in intensively managed soils. J. Environ. Qual. 35 (6), 1999–2010.
- Yang, J., Zhang, J.J., 2010. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 61, 3177–3189. https://doi.org/10.1093/jxb/erq112.
- Yang, C., Yang, L., Yang, Y., Ouyang, Z., 2004. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manage. 70, 67–81. https://doi.org/10.1016/j.agwat.2004.05.003.
- Kerbiriou, P.J., Stomph, T.J., Van Der Putten, P.E.L., Lammerts Van Bueren, E.T., Struik, P.C., 2013. Shoot growth, root growth and resource capture under limiting water and N supply for two cultivars of lettuce (Lactuca sativa L.). Plant Soil 371, 281–297. https://doi.org/10.1007/s11104-013-1672-6.
- Kato, Y., Okami, M., 2010. Root growth dynamics and stomatal behaviour of rice (Oryza sativa L.) grown under aerobic and flooded conditions. Field Crops Res. 117, 9–17.

- https://doi.org/10.1016/j.fcr.2009.12.003.
- Zhang, H., Chen, T., Wang, Z., Yang, J., Zhang, J., 2010a. Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation. J. Exp. Bot. 61, 3719–3733. https://doi.org/10.1093/jxb/erq198.
- Zhang, H., Li, H., Yuan, L., Wang, Z., Yang, J., Zhang, J., 2012a. post-anthesis alternate wetting and moderate soil drying enhances activities of key enzymes in sucrose-tostarch conversion in inferior spikelets of rice. J. Exp. Bot. 63, 215–227. https://doi.org/10.1093/jxb/err263.
- Chen, T.T., Xu, G.W., Wang, Z.Q., Zhang, H., Yang, J.C., Zhang, J.H., 2016. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes. Proteomics 16, 102–121. https://doi.org/10.1002/pmic. 201500070.
- Darzi-Naftchalia, A., Ritzemab, H., Karandishc, F., Mokhtassi-Bidgolid, A., GhasemiNasre, M., 2017. Alternate wetting and drying for different subsurface drainage systems to improve paddy yield and water productivity in Iran. Agric. Water Manage. 193, 221–231. https://doi.org/10.1016/j.agwat.2017.08.018.

CHAPTER 4

Soil Erosion: Understanding Causes, Effects, and Control Strategies

Paramita Samanta, Parijat Bhattacharya*

Department of Agriculture, Swami Vivekananda University, Barrackpore 700121, Kolkata, West Bengal, India *Corresponding author: parijatb@svu.ac.in

Abstract:

Soil erosion is a natural process involving the removal of soil particles by water, wind, and other forces, primarily affecting the topsoil layer. This phenomenon is exacerbated by intense rainstorms, which disperse soil particles and facilitate their transport into streams and rivers. Regions experiencing heavy rainfall are particularly susceptible to significant soil loss, with various forms of erosion including rill, gully, sheet, splash, and stream bank erosion. Agricultural practices, such as deforestation and improper land management, further contribute to soil degradation by disturbing the ground and removing protective vegetation. The consequences of soil erosion are profound, leading to reduced soil fertility, lower agricultural productivity, and increased water pollution due to sedimentation. The loss of topsoil diminishes the land's ability to retain water and nutrients, ultimately impacting crop yields and ecosystem health. Additionally, climate change is expected to intensify the hydrological cycle, resulting in more extreme weather events that could further exacerbate erosion rates. Effective control measures are essential for mitigating soil erosion. Strategies such as establishing vegetative cover, contour ploughing, mulching, and utilizing engineering structures can significantly reduce erosion risks. This review aims to highlight innovative engineering methods designed to combat soil erosion by managing runoff velocity and enhancing soil stability.

Keywords: Soil Erosion, Agricultural Practices, Erosion Control Measures, Soil Degradation.

Introduction:

Soil erosion is an important social and economic problem and an essential factor in assessing ecosystem health and function. *It is the natural process of soil particles being removed from the land by water, wind or other natural forces.* It has become one of the global environmental hazards that limits today's human survival and restricts global socio-economic sustainable development

(Han, Ren, Zhang and Li, 2016). In this process the topsoil of a field is carried away by physical sources such as wind and water. The soil particles are loosened or washed away in the valleys, oceans, rivers, streams or faraway lands. Higher intensity of rainstorms is the main cause of soil erosion. The raindrops disperse the soil, which is then washed away into the nearby streams and rivers. Regions with very heavy and frequent rainfall face a large amount of soil loss. The flowing water during floods also erodes a lot of soil by creating potholes, rock-cut basins, etc. While erosion is a natural process, human activities have increased by 10-40 times the rate at which erosion is occurring globally. Excessive (or accelerated) erosion causes both "on-site" and "offsite" problems. On-site impacts include decreases in agricultural productivity and (on natural landscapes) ecological collapse, both because of loss of the nutrient-rich upper soil layers. Soil erosion can be defined as a process of detachment and transport of soil particles from one place to another (Singer and Munns, 1999; and Cutler, 2006). It is reported that the annual loss of fertility by erosion is 20 times faster than what is lost by growing crops. Each year, 10,000 hectares' area is exposed to erosion. There is an increasing need to predict the consequences of any changes to the environment (Shougang et al, 2014). In states like Madhya Pradesh, Rajasthan, Maharashtra and Punjab, upto 15 per cent of the total land suffers from soil erosion. With respect to land conservation and practice, soil erosion in tropical and semi-arid regions considered as a hazard traditionally associated with agriculture (Morgan, 1995). Erosion is a major problem affecting soils all over the world. The rapid growth of the world's population has resulted in increased cultivation of land. This puts more pressure on land and leads to soil losing its structure and cohesion, which means that it can be eroded more easily. Heavy farming machinery can also 'compact' soil, which causes water to run straight off the surface after rain, taking soil particles with it, instead of infiltrating into the soil.

Types of soil erosion:

Soil erosion in **nature** (a) slow process (b) fast process - promoted by deforestation, floods, tornadoes or other human activities. These two processes are explained below:

A. Geological erosion:geological erosion is a slow process that continues relatively unnoticed and has been occurring for millions of years. The first phase of this soil forming process is called weathering which is a physico- chemical process that leads to the breakdown of rocks by wind and water into small fragments and formation of soil particles.

- b. Accelerated (speeded up) erosion: accelerated soil erosion occurs when the protective vegetation cover is destroyed. This may occur due to natural causes like flooding or due to human activities.
 One of the main human activity responsible for accelerated soil erosion is cultivation of land.
- Soil erosion is also classified on the basis of the **physical agent** responsible for erosion. The various types of soil erosion are consequently referred to as: (i) water erosion (ii) wind erosion and (iii) mass wasting.
- (I) Water Erosion: Running water is one of the main agents, which carries away soil particles. Soil erosion by water occurs by means of raindrops, waves or ice.
- Splash Erosion: Splash erosion is one type of soil erosion caused by raindrops falling onto the land, causing topsoil to disintegrate into tiny. The initial phase of erosion is represented by splash erosion or raindrop impact. Splash erosion starts with a fall of rain, which might be why it's sometimes called raindrop erosion.95% of soil is splashed by falling raindropsRunoff water <5% of soil surface. Rain drop size is 1–8 mm, 2.5mm is erosion producing rains. Drop size increases from 1 to 5 mm.
- Sheet Erosion: It is also called inter-rill erosion, sheet erosion occurs when water flows in a solid sheet over the surface of a road or other area. This occurs when rain falls on bare or sparsely covered soil, loosening fine particles (silt, clay and humus).
- *Rill Erosion*: The *erosion* of soil in *rill erosion* takes place through narrow channels that are not straight and are known as head cuts or streamlets. The accumulation of surface water into deeper, faster-moving channels causes *rill erosion*.
- Gully erosion: It happens when runoff concentrates and flows strongly enough to detach and move soil particles. Gullies may develop in watercourses or other places where runoff concentrates. In cultivation or pastures, advanced rill erosion can develop into gully erosion. Gully depth is often limited by the depth of the underlying rock which means gullies are normally less than 2m deep. However, gullies may reach depths of 10–15m on deep alluvial and colluvial soils. As seen across the (Midwest in 2019), gully erosion can hinder the ability to plow fields and grow crops.
- **Stream bank erosion**: Recent floods have made stream bank erosion a widespread problem across Queensland. The major cause of stream bank erosion is the destruction of vegetation on river banks (generally by clearing, overgrazing. **It depends on** Velocityofflow, Directionofflow,

Directionofflow, Depthandwidthofstream, Soiltexture, Tillagenearbanks, Alignment of stream Removal of vegetation Overgrazing.

(II) Wind Erosion: Wind erosion is a significant problem in the arid grazing lands of inland Queensland. Wind erosion is not a serious issue in cropping areas. Most soils cultivated in Queensland have a heavy texture—forming relatively large aggregates that are too coarse to be carried by strong winds. It is most likely to occur when strong winds blow over light-textured soils that have been heavily grazed during drought periods. It contributes to scalding, a process that forms smooth, bare areas on impermeable subsoils. These areas, which vary from a few square meters to hundreds of hectares, are difficult to revegetate due to:

- lack of topsoil
- low permeability
- Their often saline surface.

(III) Mass movement:

Mass movement occurs on cleared slopes in coastal areas. Gravity moves earth, rock and soil material downslope both slowly (millimeters per year) and suddenly (e.g. rock falls). Different forms of mass movement include:

- soil creep
- earthflow
- slumping
- landslips
- landslides
- rock avalanches.

During periods of prolonged and heavy rainfall, water entering permeable soils can be stopped by a barrier such as bedrock or a clay-rich soil horizon.

Factors Affecting Soil Erosion:

The factors affecting erosion can be divided into two categories; natural and human induced (Dingman, 1994; and Wu et al., 2004). Such activities generally remove the protective vegetation

cover, resulting in accelerated erosion by both water and wind. Erosivity or energy of the eroding agent, e.g. rainfall, overland flow or wind (Wischmeier and Smith, 1958, Skidmore and Woodruff, 1968, Fournier, 1972, Zachar, 1982, Morgan et al., 1986, Knighton, 1998). Natural factors commonly affect the upper soil layer as compared to human induced factors. Both contribute a significant amount of soil loss due to water and wind erosion. The main causes of soil erosion are overgrazing (35 percent), deforestation (30 percent) and agricultural activities (28 percent).

Natural erosion has sculptured landforms on the uplands and built landforms on the lowlands. Its rate and distribution in time controls the age of land surfaces and many of the internal properties of soils on the surfaces.

Accelerated erosion is largely the consequence of human activity. The primary causes are tillage, grazing, and cutting of timber.

- 1. Climatic factors: The amount and intensity of precipitation is the main climatic factor governing soil erosion by water. The relationship is particularly strong if heavy rainfall occurs at times whenor in locations where, the soil's surface is not well protected by vegetation.
- 2. Soil erodibility: Soil erodibility is an estimate of the ability of soils to resist erosion, based on the physical characteristics of each soil.texture is the principal characteristic affecting erodibility, but structure, organic matter and permeability also contribute.
- **3. Topography**: The topography of the land determines the velocity at which surface runoff will flow, which in turn determines the erosivity of the runoff.
- **4. Developmental activities:** Soil erosion may also occur because of various developmental activities such as housing, transport, communication, recreation, etc. Building construction also promotes soil erosion because accelerated soil erosion takes place during construction of houses, roads, rail tracks etc.
- 5. **Deforestation:** It causes increased erosion rates due to exposure of mineral soil by removing the humus and litter layers from the soil surface, removing the vegetative cover that binds soil together, and causing heavy soil compaction from logging equipment.
- **6. Agriculture:** It also causes the worst type of soil erosion on farmland in the form of wash-off or sheet erosion. The following agricultural practices can lead to accelerated soil erosion:

- **7. Overgrazing:** It means too many animals are allowed to feed on a piece of grassland. Trampling and grazing by cattle destroys the vegetation of the area.
- **8. Rivers and streams:** The flowing rivers and streams carry away the soil particles leading to a v-shaped erosion activity.
- **9.** Construction: The construction of roads and buildings exposes the soil to erosion. The forests and grasslands are cleared for construction purposes, which exposes the soil making it vulnerable to erosion.
- **10. Heavy winds:** During dry weather or in the semi-arid regions, the minute soil particles are carried away by the wind to faraway lands. This degrades the soil and results in desertification.

Effects of soil erosion:

The major effects of soil erosion include:

- 1. **Loss of arable land:** Soil erosion removes the top fertile layer of the soil. This layer is rich in the essential nutrients required by the plants and the soil. The degraded soil does not support crop production and leads to low crop productivity.
- 2. **Desertification**: Soil erosion is a major factor for desertification. It transforms the habitable regions into deserts. Deforestation and destructive use of land worsens the situation. This also leads to loss of biodiversity, degradation of the soil, and alteration in the ecosystem.
- 3. **Air pollution**: The dust particles merge in the air, resulting in <u>air pollution</u>. Some of the toxic substances such as pesticides and petroleum can be extremely hazardous when inhaled. The dust plumes from the arid and semi-arid regions cause widespread pollution when the winds move.
- 4. **Clogging of waterways:** The agricultural soil contains pesticides, insecticides, fertilizers, and several other chemicals. This pollutes the water bodies where the soil flows.the sediments accumulate in the water and raise the water levels resulting in flooding.
- 5. Water pollution: Soils eroded from agricultural lands carry pesticides, heavy metals, and fertilizers which are washed into streams and major water ways. This leads to water

- pollution and damage to marine and freshwater habitats. Accumulated sediments can also cause clogging of water ways and raises the water level leading to flooding.
- 6. **Soil acidity leavels:** When the structure of the soil becomes compromised, and organic matter is greatly reduced, there is a higher chance of increased soil acidity, which will significantly impact the ability for plants and crops to grow.

Prevention from soil erosion:

The most effective known method for erosion prevention is to increase vegetative cover on the land, which helps prevent both wind and water erosion. In addition to significantly reducing wind erosion, windbreaks provide many other benefits such as improved <u>microclimates</u> for crops (which are sheltered from the dehydrating and otherwise damaging effects of wind), habitat for beneficial bird species.

- 1. **Build soil organic matter:** To be healthy, soil needs just the right mixture of water, air, minerals, and organic matter. Soil organic matter, made up of decomposing plant and animal material, is the glue that helps bind soil together and keeps it anchored in place.
- 2. **Plant vegetation:** Trees, shrubs, hedgerows, and ground plants can block corrosive wind. Ensuring uninterrupted ground cover, such as through <u>planting cover crops</u>, also helps bind soil to roots.
- 3. **Use erosion control matting:** also known as an erosion control blanket, this ground covering is often made of open-weave, biodegradable materials that shield the soil and provide support for growing vegetation on bare ground.
- 4. **Practice no-till/minimal tillage:** Farmers have been plowing farm fields for centuries, but in recent decades agriculture scientists have helped prove that a <u>no-tillage</u> approach may offer more benefits.
- 5. **Practice no-till/minimal tillage:** Farmers have been plowing farm fields for centuries, but in recent decades agriculture scientists have helped prove that a <u>no-tillage</u> approach may offer more benefits.

Conclusion:

Today soil erosion is considered as one of the most serious natural resource depletions in the world.

Over the past several thousand years, deforestation, fuel wood, overgrazing, agriculture and industrialization activities have contributed to the greatest soil erosion problem. tillage and cropping practices, as well as land management practices, directly affect the overall soil erosion problem and solutions on a farm. When crop rotations or changing tillage practices are not enough to control erosion on a field, a combination of approaches or more extreme measures might be necessary.

References:

- Dingman, D. W. (2015). Comparative analysis of Paenibacillus larvae genotypes isolated in Connecticut. Archives of microbiology, 197, 789-795.
- Fournier, J. M. (1972). Propriétésmagnétiques et structure électronique du plutonium. Journal de Physique, 33(7), 699-706.
- Knighton, A. D. (1999). Downstream variation in stream power. Geomorphology, 29(3-4), 293-306.
- Morgan, J. W. (1986). Ultramafic xenoliths: clues to Earth's late accretionary history. Journal of Geophysical Research: Solid Earth, 91(B12), 12375-12387.
- Morgan, R. P. C. (2009). Soil erosion and conservation. John Wiley & Sons.
- Ruifang, D., Runai, Q., Feiyan, H., Mengmeng, W., Zhaoyang, T., Tao, L., & Shougang, Z. (2014, May). Characterization of coincident-frequency entangled source in quantum synchronization application. In 2014 IEEE International Frequency Control Symposium (FCS) (pp. 1-4). IEEE.
- Said, N. (2008). Determination of soil erosion parameters for malaysian conditions using remote sensing and geographic information system approach (Doctoral dissertation, UniversitiTeknologi Malaysia, Faculty of Geoinformation Science and Engineering).
- Skidmore, E. L., & Woodruff, N. P. (1968). Wind erosion forces in the United States and their use in predicting soil loss (No. 346). US Agricultural Research Service.
- Velásquez, N., Quintero, F., Koya, S. R., Roy, T., & Mantilla, R. (2023). Snow-detonated floods: Assessment of the US midwest march 2019 event. Journal of Hydrology: Regional Studies, 47, 101387.

- Wischmeier, W. H., & Smith, D. D. (1958). Rainfall energy and its relationship to soil loss. Eos, Transactions American Geophysical Union, 39(2), 285-291.
- Xia, C., Wang, K., Dong, Y., Zhang, S., Shi, S. Q., Cai, L., ... & Li, J. (2016). Dual-functional natural-fiber reinforced composites by incorporating magnetite. Composites Part B: Engineering, 93, 221-228.
- Zachar, Z., & Bingham, P. M. (1982). Regulation of white locus expression: the structure of mutant alleles at the white locus of Drosophila melanogaster. Cell, 30(2), 529-541.

CHAPTER 5

Plant-Microbe Interactions: Friend or Foe?

Md Rayhan, Ria Mukhopadhyay*

Department of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal, India

*Corresponding author: riam@svu.ac.in

Abstract

Plant-microbe interactions play a critical role in shaping plant health, growth, and productivity. These interactions, occurring both above and below ground, can be categorized as beneficial, neutral, or detrimental, depending on the nature of the relationship. Beneficial microbes, such as nitrogen-fixing bacteria, mycorrhizal fungi, and plant growth-promoting rhizobacteria (PGPR), enhance nutrient uptake, stimulate growth, and provide protection against pathogens through mechanisms like induced systemic

resistance (ISR). On the other hand, pathogenic microbes, including fungi, bacteria, and viruses, can

compromise plant health, leading to significant losses in agricultural productivity.

Understanding the complex molecular and biochemical dialogues between plants and microbes is crucial for harnessing their potential benefits while mitigating harmful effects. Recent advancements in genomics,

metagenomics, and transcriptomics have unraveled the intricate signalling networks that mediate these

interactions, such as quorum sensing, effector-triggered immunity (ETI), and microbe-associated molecular

patterns (MAMPs). These findings offer opportunities to develop sustainable agricultural practices, such as

biofertilizers, biopesticides, and microbiome engineering, to reduce dependency on chemical inputs.

However, the dual role of some microbes as both friends and foes complicates their management. For

instance, opportunistic pathogens can exploit weakened host plants, turning symbiotic relationships into

parasitic ones. This underscores the need for a deeper understanding of environmental and genetic factors

influencing these dynamics.

Keywords: Beneficial Microbes, Pathogens, Plant Growth Promoting Rhizobacteria (PGPR), Symbiosis,

Nitrogen-fixing Bacteria, Nutrient Uptake

Introduction:

Rhizosphere is a zone surrounding the plant roots having maximum microbial activity. Many plant growths promoting microorganisms that are associated with the plant root system depend on root exudates for their survival (Whipps, 1990). Root exudates contain a variety of compounds including polysaccharides and proteins. Microorganisms residing in the soil environment play a major role in ecosystem functioning. Several fungal and bacterial species are present in the rhizosphere. These microbial species interact with each other and with plants. Such interactions may be friendly or hostile as described by a broad range of scientific studies. The plant-microbe interactions take place above and below ground; however, plantmicrobe interactions are more complex below the ground than above the soil surface. The manipulation of these interactions is not only important for understanding the ecological role of microbial population but also for sustainable agriculture. The interactions among microbial community and plants are very complex. The microbial association with plants is not only useful for improving plant growth under normal condition, but also protects plants from adverse environment by promoting plant growth under stress conditions. Microbes such as mycorrhizal fungi and rhizobia, which associate with plant roots, provide mineral nutrients to plants in exchange of carbon required for their growth. A number of bacterial strains have been reported that cause significant effect on plant growth and development under stressed conditions including salinity, drought, heavy metal, temperature and pathogen. Inoculation of BERA71 isolate of Bacillus subtilis increased photosynthetic activity and reduced the levels of reactive oxygen species (ROS) in chickpea plants grown in saline soil conditions (Abd Allah et al., 2018). Plant growth promoting strains of Pseudomonas spp. were considered as drought tolerant owing to their withstanding a substrate metric potential of -1.0 MPa [30% polyethylene glycol 8000]. Similarly, mycorrhizae fungi also play important role to facilitate plant growth under various kinds of stresses by mechanisms like enhancing antioxidant system and osmolytes production in addition to supply of nutrients to the host plant.

It is also evident from the literature that microbes interact negatively with plants and cause negative impacts on plant growth. Such negative impacts are due to their pathogenic nature that causes onset of various diseases or by the production of compounds that are harmful for the plants. The nature of interaction whether it will be friendly, or hostile is determined by the type of microbial specie as well as the mechanism of action adopted by the microbe. For example, cyanide production by some bacteria inhibits plant growth while phytohormones production by a variety of bacterial strains causes plant growth enhancement.

The above discussion shows that plant-microbe interaction is very complex and better understanding of this aspect would be useful for promoting growth and development of plants on sustainable basis. The present review has been undertaken to insight the interactions among microbial community and to further update

the knowledge about impact of this community on plant growth and development.

Nature of the Interactions:

The microbial population that exists in the rhizosphere depends on root exudates for survival (Whipps, 1990). A diverse bacterial population is present in the rhizosphere that interacts with the plants. These interactions may be positive or negative ones. All these interactions cause significant impact on plant growth and development. These interactions are based on complex exchanges between both partners i.e.; microbes and plant. The beneficial and harmful nature of these relationships is all regulated by complex molecular signaling. These relationships can occur in various parts of the plant, including the rhizosphere (the soil surrounding roots), the phyllosphere (leaf surface) and endosphere (inside plant tissues). Depending on the nature of the interaction plant-microbe relationships are classified as:

- a) Symbiotic Interactions
- b) Pathogenic Interactions
- c) Commensal Interactions

Symbiotic Interactions:

A symbiotic relationship between plants and microbes is a long-term interaction that benefits both the plant and the microbe. These relationships provide at least one of the participating species with a nutritional advantage. In this type of interactions there will be root nodules forms in leguminous plants, like beans will generally have fewer than 100 nodules, soybeans will have several hundred per plant and peanuts may have 1000 or more nodules on a well-developed plant.

Mainly three types of relationship have been recognized depending on the nature of relationship: mutualism, commensalism and parasitism. Symbiosis like bacteria and fungi can provide plants with nutrients like nitrogen and phosphorus. Symbiosis can help plants to survive in harsh conditions like extreme temperatures, drought and salinity, improve soil structure and organic matter content, protect plants from diseases and other pathogens, and also increase crop productivity, which can help with food security and reducing hunger.

Pathogenic Interactions:

Plant pathogens include fungi, bacteria, oomycetes, and viruses. Pathogens have devised different strategies to invade a plant, as well as to feed on and reproduce in the plant. Besides the assignment to bacteria or fungi, this is regarded as an important feature to classify the attacking micro-organism. Biotrophic

pathogens need living tissue for growth and reproduction; in many interactions the tissue will die in the late stages of the infection (hemi-biotrophic pathogens). By contrast, necrotrophic pathogens kill the host tissue at the beginning of the infection and feed on the dead tissue. Viruses, in general, need living tissue for nutrition, while biotrophic as well as necrotrophic strategies can be found among bacteria and fungi. Similarities in the pathways involved in the defence of the plants against biotrophic fungi and bacteria on one hand or against necrotrophic fungi and bacteria on the other hand have been described. The jasmonate / ethylene pathway is more important in defending necrotrophic pathogens while salicylic acid-dependent responses are more effective against biotrophic pathogens.

Pathogen attack first initiates a series of rapid changes resulting in a decline in photosynthesis and an increase in respiration, photorespiration, and invertase enzyme activity. The mechanisms and pathways that mediate these rapid changes are largely unknown. The electrophilic oxylipin 12-oxo-phytodienoic acid is a compound that has been shown to accumulate after pathogen infection and to result in a decrease in photosynthesis very shortly after application, suggesting that it might be involved in the decrease in photosynthesis upon pathogen challenge (Berger et al., 2007). Hexoses released by the action of increased invertase activity act as signalling molecules and repress photosynthetic genes. This down-regulation of photosynthetic genes, in turn, decreases the net photosynthesis rate. While the data from several plant–pathogen interactions, especially with virulent biotrophic fungal pathogens, fit into this general model, there are also some examples that differ in distinct points from this model. As discussed above, the accumulation of hexoses and the repression of photosynthetic genes have not always been observed. Another example is that the expression, but not the activity, of cell wall invertases is increased in the *Arabidopsis–P. syringae* interaction. These exceptions from the rule support the complexity of the interactions which is based on the fundamental diversity of the plant as well as the microbial partner.

Commensal Interactions:

Commensalism is a long-term <u>biological interaction</u> (<u>symbiosis</u>) in which members of one <u>species</u> gain benefits while those of the other species neither benefit nor are harmed. This is in contrast with <u>mutualism</u>, in which both organisms benefit from each other; <u>amensalism</u>, where one is harmed while the other is unaffected; and <u>parasitism</u>, where one is harmed and the other benefits. The commensal (the species that benefits from the association) may obtain nutrients, shelter, support, or locomotion from the host species, which is substantially unaffected. The commensal relation is often between a larger host and a smaller commensal; the <u>host</u> organism is unmodified, whereas the commensal species may show great structural adaptation consistent with its habits.

Beneficial Microorganisms:

Nitrogen-Fixing Bacteria:

Nitrogen (N) is one of the main macronutrients needed for the correct growth and development of plants, and therefore is one of the most limiting nutritional factors. The uptake of N by the plant is entirely dependent on the amount present in the soil since plants are unable to assimilate atmospheric N2. Atmospheric N2 must be first reduced to ammonia (NH3) to be assimilable by plants. Fortunately, certain prokaryotic microorganisms, known as diazotrophs, possess the ability to reduce the atmospheric N2 to NH3 in a process known as biological nitrogen fixation (BNF) via the enzymic complex nitrogenase. Considering their life strategies, diazotrophic bacteria can be classified as nodule-forming bacteria or as non-nodular bacteria.

The main examples of nodule-forming bacteria are those collectively called rhizobia, which associate with plants of the Leguminosae (=Fabaceae) family. In addition to rhizobia, actinobacteria of the *Frankia* genus can form nodules and establish symbioses with a diverse group of plants from 23 genera from eight different families belonging to the orders Fagales, Rosales, and Cucurbitales.

Non-nodular bacteria can be found as free-living in the rhizosphere, associated with roots (associative) or inside plant tissues (endophytic). The soil free-living group includes the genera *Azotobacter, Bacillus, Beijierinckia, Burkholderia, Clostridium, Desulfovibrio, Derxia, Enterobacter, Klebsiella, Paenibacillus, and Serratia.* The free-living group also includes cyanobacteria and phototrophic sulfur bacteria. In addition to those in the free-living group, cyanobacteria may live in symbiosis with fungi (forming lichens) or with plants (for example, *Nostoc* with bryophytes, a few *gymnosperms* and *angiosperms*, and *Anabaena* with the aquatic fern *Azolla*).

Mycorrhizal Fungi:

The term mycorrhiza was introduced as early as 1885 by Frank, as a fungus—root symbiosis that occurs in the rhizosphere, a zone rich in microbial activity. This relationship enhances nutrient availability and influences plant health. The fungus provides water and nutrients like phosphate and nitrogen to the plant, while the plant supplies carbohydrates and other organic metabolites to the fungus. Mycorrhizal fungi play important roles in soil biology and chemistry, and most terrestrial plants have associations with them, including many crop species. On the other hand, some exceptions include several species of Brassicaceae. In environments in which plants do not require assistance in obtaining water and nutrients, they do not form these associations, and in some conditions like excessive plant stress, mycorrhizal fungi can turn parasitic

with plants. Mycorrhizae can be classified based on how they colonize plant roots. These fungi have developed diverse strategies of colonization, as well as different degrees of plant dependence. These include facultative biotrophic ectomycorrhizal fungi (EMF) and the most common obligate biotrophic arbuscular mycorrhizal fungi (AMF), also known as endomycorrhizal fungi. Arbuscular mycorrhiza is one of the oldest interactions on Earth and was considered crucial for plant evolution on land. The main AMF species belong to the phylum Glomeromycota, order Glomerales, and have been reported to improve plant health and nutrition as well as resistance to stress.

Plant Growth-Promoting Rhizobacteria:

Plant growth is a function of an interaction between plants and its immediate environment. The environment for roots is the soil or planting medium, which provide structural support as well as water and nutrients to the plant. Increased plant growth and crop yield can be obtained due to beneficial microbes which are also termed as plant growth-promoting rhizobacteria (PGPR). Kloepper and coworkers coined the term PGPR (plant growth-promoting rhizobacteria) in the late 1970s. PGPR improve plant growth by indirect or direct mechanisms although the difference between the two is not always distinct (Ashraf et al. 2013). Direct mechanisms include the improvement of nutrient availability to the plant by the fixation of atmospheric nitrogen, production of iron-chelating siderophores, organic matter mineralization (thereby meeting the nitrogen, sulfur, phosphorus nutrition of plants), and solubilization of insoluble phosphates. Another important direct mechanism involves the production of plant growth hormones and the stress-regulating hormone 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Indirect mechanisms include inhibition of microorganisms that have a negative effect on the plant (by niche exclusion), viz., hydrolysis of molecules released by pathogens, synthesis of enzymes that hydrolyze fungal cell walls, synthesis of HCN, improvement of symbiotic relationships with rhizobia and mycorrhizal fungi, and insect pest control. Though the term PGPR strictly includes nitrogen-fixing and P-solubilizing organisms, scientists commonly refer those bacteria promoting plant growth directly through production of phytohormones or indirectly through suppression of pathogenic organisms, as PGPR.

Pathogenic Microorganisms:

Plant Pathogenic Fungi:

Most of the fungal strains also live as pathogen and cause certain diseases in plants. The study on the interactions of plants and phytopathogenic fungi is now becoming one of the most important and interesting subjects of plant sciences. These pathogens may be biotrophic, necrotrophic or hemibiotrophic. Biotroph fungi obtain nutrients from living tissues through haustoria and necrotrophic fungi obtain their nutrients

after killing the host tissues via enzymes and toxins. While, hemibiotrophic fungi follow the both phases i.e. a biotrophic phase followed by a necrotrophic stage. Owing to their diverse lifestyle they have the ability to colonize plant effectively. Pathogenic fungi cause detrimental effects on plant physiology. Plant fungal pathogens are economically important due to the threats they pose to the growth and production of most of the economically important crops. Agricultural crops, grasslands and forests are losing its economical values due to negative impact of pathogenic fungi in these areas. There is variability among fungal strains regarding severity of pathogenicity. Dean et al. (2012) reported the top ten plant pathogens in order of their severity. These include Magnaporthe oryzae, Fusarium oxysporum, Puccinia spp., Fusarium graminearum, Blumeria graminis, Botrytis cinerea, Mycosphaerella graminicola, Colletotrichum spp., Ustilago maydis, and Melampsora lini. Annual loss of about 15% has been estimated due to plant diseases caused by fungi.

Plant Pathogenic Oomycetes:

Oomycetes are most important soil borne plant pathogens after fungi, cause mutilation to agricultural production and natural ecosystem. Oomycetes have unique molecular process for parasitizing their hosts that is different from true fungi but morphologically resembles due to filamentous growth habit. Oomycetes have nine genera, but two genera *Phytophthora* and *Pythium* are pathogenic with a number of species that parasitize a wide range of host plant; however, some saprophytes are beneficial to the environment. *Phytophthora* includes more than 60 species and most of these are pathogens to dicotyledonous as well as monocot plants. The most notable specie is *Phytophthora* infestans which was the main reason for the Irish potato famine. Other important diseases caused by *Phytophthora* include; soybean root rot, cocoa black pod and dieback and sudden oak death. *Pythium* includes >100 important pathogenic species and some of these are *Pythium aphanidermatum*, *P. ultimum*, *P. phragmitis*, *P. litorale*, *P. dissotocu*m and many more near about 125. These are occurring in soil, water, sand and peat as well. Some of these are harmful plant pathogens and cause a number of diseases including rots of seedlings and roots, damping off and decaying of fruits and vegetables.

Plant Pathogenic Bacteria:

Plant growth enhancement is a well-known aspect of the rhizosphere bacteria. However, certain studies show the negative effect of these bacteria on plant growth and development. This negative impact might be due to production of compounds that are harmful for plant or overproduction of certain growth regulators. Auxin is a well-known hormone that enhances plant growth; however, its positive and negative role is related to its concentration. At low concentration, it improves plant growth while at high concentration, it inhibits the growth due its negative impact on plant root. Certain bacterial strains produce cyanide that has

inhibitory effect on plant growth and development. *Pseudomonas aeruginosa* is a well-known strain that have the ability to degrade contaminants; however, it is also an opportunistic pathogen. Microbial volatiles are organic compounds that are produced by all microorganisms as part of their normal metabolism. These volatile compounds make a good contribution to the plant-microbe interactions than non-volatile ones.

Benefits of Microorganisms in Agriculture:

Beneficial microorganisms are essential tools for sustainable agriculture due to their multifaceted roles in enhancing soil health, promoting plant growth, and ensuring crop productivity. In addition, they can help mitigate climate change through their roles in carbon sequestration, reductions in greenhouse gas emissions, and the bioremediation of contaminated soils.

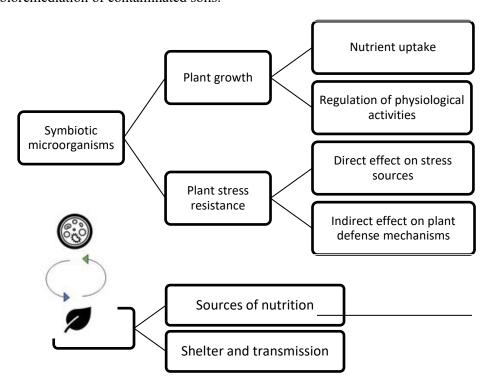


Figure 2: Potential benefits of interaction between symbiotic microorganisms and plants.

Many beneficial microorganisms have been shown to improve plant health in a wide range of plant species. Conversely, other microorganisms are restricted to a very narrow range of hosts, such as the genus *Epichloë*, whose different species can only colonize a range of plant species. Conversely, other microorganisms are restricted to a very narrow range of hosts, such as the genus *Epichloë*, whose different species can only colonize a small range of hosts. Their significance extends beyond mere nutrient cycling to encompass a range of actions that contribute to the resilience and productivity of agricultural ecosystems. For example, experiments in Mexico using the enrichment of 15N over five years revealed that atmospheric nitrogen

fixation contributed significantly to maize's nitrogen nutrition, ranging from 29% to 82%. Similarly, Rose et al. showed that a commercial biofertilizer could replace 23% to 52% of nitrogen chemical fertilizers without reducing rice yield in Southeast Asia.

On the other hand, the ability of mycorrhizal fungi to improve P uptake is based on increasing absorption surface area and solubilizing soil P. AMF enhanced phosphorus uptake during fast-growing stages in maize, contributing up to 19.4% of the total available soil P and significantly increasing yield. Interestingly AMF recruit bacteria that are able to solubilize P instead of directly affecting the P in the soil. Some soil fungi interact synergistically with rhizobacteria to enhance plant growth and nutrient acquisition. For instance, Bouhraoua et al. demonstrated that inoculation with certain PSB strains, such as *Pseudomonas* sp., was correlated with AMF colonization, and this combination improved NPK uptake in peanut plants by up to 200%. AMF can also facilitate colonization by symbiotic bacteria, as seen in the work by Barreto de Novais et al., who revealed how AMF *Glomus formosanum* facilitates the transfer of N fixing *Bradyrhizobium diazoefficiens* in *Glycine max* roots. Furthermore, bacteria of the genus Frankia were studied as coinoculants with several EMF in *Alnus viridis* under poor-nutrient soil by Chen et al. and were proved to benefit both fungal and plant growth.

In addition to plant development, beneficial microorganisms can play a crucial role in protecting host plants from infections. The biocontrol bacteria *Bacillus* and *Pseudomonas* spp. along with the fungal genera *Trichoderma*, *Aspergillus*, and *Penicillium* are among the most popular biocontrol agents against both bacterial and fungal plant diseases in major crops. For instance, inoculation with *Bacillus* strains such as *B. subtilis* or *B. amylolique faciens* have been proven to confer resistance against pathogens such as *Botrytis cinerea* in strawberry, *Ralstonia solani* in cowpea, and *Sclerotium rolfsii* in peanut.

Conclusions and Future Prospects:

Plant-microorganism interactions represent a promising avenue for advancing agriculture and food security while minimizing the environmental impact caused by chemical fertilizers and pesticides. Beneficial microorganisms are essential in this quest, forming symbiotic relationships with plants to improve nutrient cycling, soil health, and plant resilience against various stresses. From mycorrhizal fungi extending the reach of plant roots for nutrient uptake to nitrogen-fixing bacteria enhancing nutrient availability, the multifaceted functions of these microorganisms offer many alternatives for addressing the challenges of modern agriculture. Integrating microbial inoculants into precision farming practices can optimize resource use and crop performance. Additionally, expanding these technologies to a broader range of crops and adapting them to diverse climates and soils will further their application and benefits.

However, to fully harness the potential of beneficial microorganisms in agricultural systems, we must address key aspects of microbial ecology. To overcome these barriers, interdisciplinary approaches that integrate microbiology, agronomy, and environmental science are required to optimize the efficacy and sustainability of microbial inoculants.

In conclusion, by promoting the natural symbiotic relationships that have evolved over millennia, we expect to reduce the reliance on chemical inputs while we enhance soil health and crop yields in a way that is environmentally sound and economically viable. As we continue to unlock the secrets of plant—microbe interaction, we will strive towards future agriculture that is both resilient and sustainable.

References:

Whipps JM (1990) Carbon economy. Publication of John Wiley and Sons, New York, 1, 59-97

Abd_Allah EF, Alqarawi AA, Hashem A, Radhakrishnan R, Al-Huqail A, Al-Otibi FON, Malik JA, Alharbi RI and Egamberdieva D (2018) Endophytic bacterium *Bacillus subtilis* (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. Journal of Plant Interactions 13(1): 37-44.

Berger S, Benediktyova Z, Matous K, Bonfig KB, Mueller MJ, Nedbal L, Roitsch T (2007) Visualization of dynamics of plant–pathogen interaction by novel combination of chlorophyll fluorescence imaging and statistical analysis: differential effects of virulent and avirulent strains of *P. syringae* and of oxylipins on *A. thaliana*, Journal of Experimental Botany, 58:797-806)

Ashraf MA, Asif M, Zaheer A et al. (2013) Plant growth promoting rhizobacteria and sustainable agriculture: a review. African Journal of Microbiology Research. 7(9): 704-709.

Ralph D, Jan AL, Van K, Zacharias A, Pretorius et al. (2012) The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology. 13(4) 414-430.

CHAPTER 6

Climate Change and Rice Yields in India: Impacts and Solutions

Aritra Deb, Sayani Bhowmick*

Department of Agriculture, Swami Vivekananda University, Barrackpore 700121, West Bengal, India

*Corresponding author: sayanibhowmick94@gmail.com

Abstract

Climate change is increasingly recognized as a critical factor influencing agricultural productivity, with profound implications for food security. In India, rice, a staple crop, is highly vulnerable to changing climatic conditions. This research investigates the impact of climate change on rice yields in India, focusing on temperature fluctuations, altered precipitation patterns, and extreme weather events. Using empirical data from multiple regions in India over the past few decades, the study employs statistical models to analyze the correlation between climatic variables and rice production. Results indicate that rising temperatures and erratic rainfall are negatively impacting rice yields, particularly in the country's major rice-producing states. Increased frequency of droughts and floods, coupled with prolonged heat waves during the critical flowering and grainfilling stages, have exacerbated yield losses. Additionally, regional variations in climate impacts underscore the need for location-specific mitigation strategies. The findings also highlight the adaptive capacity of farmers, including shifts in planting dates and crop varieties, but emphasize the urgent need for more robust agricultural policies and climate-resilient technologies. This research contributes to the understanding of climate change's direct and indirect effects on food security in India and provides valuable insights for policy formulation aimed at enhancing rice production sustainability in a changing climate.

Keywords: Climate change, rice yields, India, temperature fluctuations, precipitation patterns, extreme weather events, agricultural productivity, food security, climate-resilient technologies.

1. Introduction

Rice is India's most important food crop, covering ~44 million hectares and feeding over 800 million people. Its productivity is highly climate-sensitive, since the crop relies on the summer monsoon and requires specific thermal conditions. In recent decades India's climate has warmed

(observationally ~0.7–0.8 °C rise in mean annual temperature since 1900) and monsoon rainfall patterns have become more erratic (with a slight increasing trend in total but higher year-to-year variability) (Datta and Behera, 2022). Climate models project further warming (≥2–4 °C by late century under high-emission scenarios) and changing rainfall regimes for South Asia, along with more frequent heatwaves, droughts, and extreme rainfall events. These changes can shorten rice growing seasons, increase water stress and pest pressure, and jeopardize food security (IPCC, 2022).

This paper reviews how major climate drivers – rising temperatures, altered monsoon rains, elevated CO₂ and extremes (heat waves, floods, droughts, cyclones) – impact rice yields across India. We emphasize quantitative modelling and recent field data, drawing on global meta-analyses and India-specific studies. We then explore adaptation strategies at the farm level, including improved varieties (heat-/drought-tolerant lines), agronomic adjustments (sowing dates, irrigation and nutrient management), and diversification practices. The goal is to inform policymakers and farmers how to sustain rice production as climate changes, based on the latest peer-reviewed and official findings.

2. Climate Drivers and Rice Growth

2.1. Rising Temperatures

Higher air temperatures reduce rice yields primarily by shortening the growing period and by causing heat stress during flowering and grain-filling. Both daytime maxima and night-time minima are important. Global analyses suggest a median yield loss of about 3–4% per 1°C rise in mean temperature. Meta-analyses indicate every 1°C increase in average temperature cuts rice yield by roughly 3.8–10% (Li et al., 2024). This is because rice plants develop faster under warmth, leading to shorter vegetative and grain-filling phases. For example, IPCC (2022) notes that in South Asia higher temperatures will "lead to shorter growing periods of rice cultivation, resulting in lower rice yields". Empirical studies confirm these trends. One global review reports up to 10% decline in rice yield for every 1 °C warming (Peng et al. 2004). Another meta-study found yield losses of ~3.85% per °C on average.

In India, rising night-time temperatures are especially damaging: warm nights impede spikelet fertility and grain filling, even when days are moderately warm. Heat stress during critical stages (booting/flowering) can cause floret sterility. For example, extreme heat in India has been linked

to dramatic yield reductions in experiments: under 40°C day / 35°C night stress, one IR64 (high-yield) rice line lost 67% of spikelet (Shrestha et al., 2022). High daytime temperature alone can also reduce grain weight. In general, tropical indica varieties are more heat-tolerant than temperate japonica ones (Ren et al., 2023), but even adapted varieties have limits above ~35°C at flowering. Field data show that recent hot episodes (e.g. May-June heatwaves) have trimmed yields in Bihar, Odisha and other rice belts. IPCC 2022 notes that current Asian rice farmers are already near heat tolerance limits, and projected warming will further cut yield potentials.

2.2. Changing Rainfall and Monsoon Patterns

Rice in India is predominantly monsoon-fed. The southwest monsoon (June–September) provides ~70-80% of India's annual rain. Changes in monsoon timing, amount and spatial distribution thus directly affect rainfed rice. Recent decades have seen more frequent monsoon failures and delays. Farmers report erratic rains, including late onsets and dry spells during rice transplanting and vegetative stages (Datta and Behera, 2022). Climate projections suggest the monsoon will become more variable: some areas may see increases in mean precipitation, but more heavy rainfall events punctuated by dry spells (IPCC, 2022).

Studies of Indian rice yields and rainfall have documented that below-normal monsoon rainfall typically causes yield drops. For example, one agro-climatic analysis found that a 10% shortfall in Kharif (monsoon) rain reduced yield by nearly the same percentage. Conversely, higher-than-normal rains can benefit fully irrigated systems but may worsen flooding in poorly-drained fields. The global meta-analysis shows yield gains with up to 25% more precipitation, but beyond that yields fall (likely due to flooding or waterlogging) (Li et al., 2024). In India, heavy rainfall events in East and Northeast can inundate lowland rice fields and even introduce salinity in coastal zones (from storm surge). Data from 2009 illustrate this volatility: unusually low rainfall in eastern India that year led to a 10% drop in national rice output.

Projected changes in rainfall are uncertain: some models forecast modest increases in eastern Indo-Gangetic Plains, while others predict declines in peninsular India. A recent crop modelling study in Uttar Pradesh found that western UP (semi-arid) could see increased rainfed rice yields due to wetter monsoons, whereas eastern UP yields would decrease (Singh et al., 2024). Overall, however, negative effects of heat and shortened seasons dominate in irrigated systems: Singh et al. (2024) report irrigated rice in UP could decline by ~20% by 2090 under both SSP4.5 and 8.5

(warming and shorter growth), even though some zones benefit from extra rain. In summary, more rainfall variability means droughts and floods both endanger rice, and future distributions of rain (timing, intensity) will be critical determinants of yields in different regions.

2.3. Elevated CO₂ Concentration

Rising atmospheric CO₂ tends to stimulate photosynthesis in C₃ plants like rice, potentially enhancing yields and water-use efficiency (a phenomenon called CO₂ fertilization). The meta-analysis by Li et al. (2024) finds that higher CO₂ offsets some warming losses: a 100 ppm rise in CO₂ was associated with a 7.1% yield increase. Simulation studies (e.g. in Kerala) likewise show that moderate warming combined with elevated CO₂ can even increase yields. For instance, a Kerala modelling study found yields rose under 1°C warming when CO₂ was also higher. However, this CO₂ benefit has limits. At 2–4°C warming, the Kerala simulations saw yield declines regardless of CO₂ increase (Harithalekshmi and Ajithkumar, 2024). This is because temperature stress (especially heat or pollen sterility) outweighs the slower crop cycle under CO₂, and drought or nutrient limitations set in. Thus, while elevated CO₂ provides some "climate change greening", its positive effect is unlikely to fully neutralize the harms of 2–4°C warming in tropical rice. India's NICRA project also notes that management (fertility/water) and CO₂ can partially mitigate negative impacts, but without adaptation projected rainfed yields drop 20–47% by 2080.

2.4. Extreme Weather Events

Climate change is expected to increase the frequency and intensity of extreme events – heat waves, droughts, floods and cyclones – all of which can devastate rice crops. Already, extreme heat or unseasonal cold can coincide with flowering, causing acute yield losses. For instance, the heatwave during the Kharif season of 2009 in India led to a significant decline in rice production and also negatively impacted wheat yields (Li et al., 2025). Heavy rains and floods (often linked to tropical cyclones or monsoon bursts) can submerge paddy fields. India's coastal and eastern states face increasing flood risk; for instance, flash floods in Bihar and Uttar Pradesh have drowned rice paddies before harvest. Conversely, droughts, especially in rainfed uplands and non-irrigated plains (e.g. Vidarbha, Bundelkhand), lead to crop failure and increased irrigation demand.

IPCC (2022) highlights that monsoon extremes and heatwaves are growing threats: it notes that "extreme climate events will have an increasing impact on livelihoods" and that both floods and droughts regularly cause crop losses in South Asia. A modelling study in Western Nepal found

future yield variability will be driven mainly by drought frequency. While quantitative Indian projections by zone are limited, evidence suggests that extreme heat could knock 10–20% off yields in severe years, floods could wipe out pulses of crops in coastal plains, and droughts will become more common on the Deccan plateau.

2.5. Modelling and Yield Projections

Several studies have modelled future rice yields under climate scenarios. The ICAR-NICRA network's integrated assessments indicate that without adaptation, rainfed rice in India could lose ~20% yield by 2050 and ~47% by 2080, whereas irrigated rice losses are smaller (3–5% by 2080). This large difference reflects irrigation's buffer effect. Singh et al. (2024) used the CERES-Rice model across Uttar Pradesh's agroclimatic zones: they project a net decline in overall rice yield under both moderate (SSP2-4.5) and high (SSP5-8.5) scenarios, even though some western districts see slight gains in rainfed rice from more rainfall. Under worst-case warming, irrigated yields could decline up to ~20% by 2090s (Singh et al., 2024).

Globally, meta-analyses and ensemble crop models corroborate large losses for South Asian rice. A recent meta-modelling study estimates ~21% decline in Indian rice yields (and similar in Bangladesh) by late century under business-as-usual (SSP5-8.5) (Li et al., 2025). Another meta-analysis reports every 1°C reduces yield ~3.8%, and >25% precipitation change (positive or negative) reduces yields. Projections also show rising CO₂ could partially offset losses: one analysis indicates 100 ppm CO₂ might boost yields 7%, but a 25% increase in temperature would still cut yields by 3.85% per °C (Li et al., 2024). Overall, the consensus is that in most rice-growing regions of India – especially the historically cooler Indo-Gangetic Plains – climate change will shrink yields unless countered by breeding and management.

3. Adaptation and Mitigation Strategies for Farmers

To sustain or improve rice productivity under climate stress, a portfolio of farm-level adaptations is needed. Research and extension agencies in India recommend combining genetic, agronomic and resource conservation measures. Key strategies include:

3.1. Climate-Resilient Varieties: Developing and using rice cultivars tolerant to abiotic stresses is vital. The ICAR–National Rice Research Institute and ICAR–IIRR have released dozens of new climate resilient rice varieties. For example, by 2024 India had

developed 668 rice cultivars, including 103 drought-tolerant, 50 flood/submergence-tolerant, and 6 heat-tolerant varieties. Varieties such as DRR Dhan 42 (drought-hardy), DRR Dhan 50 (drought as well as submergence tolerant) and DRR Dhan 47, DDR Dhan 52 (heat-tolerant high-yielders) have been introduced. These and similar lines (e.g. Pusa varieties, Sarju series) help maintain yields during stress. Improved seed distribution and farmer awareness e.g. via NICRA village demos) encourage their adoption. Ongoing breeding also targets saline tolerant and nutrient-efficient genotypes for coastal and degraded soils. The PIB notes that widescale deployment of such varieties and climate-smart techniques (e.g. aerobic rice, direct-seeded rice) in vulnerable districts is a cornerstone of India's adaptation (NICRA) programs (Govt. of India press release dated on Dec 17, 2024).

- 3.2. Agronomic Adjustments: Farmers can alter management to align crop growth with more favorable conditions. Shifting planting dates can avoid peak heat or utilize forecast rains; e.g. transplanting Kharif rice slightly earlier or later based on regional climate trends. Adjusting crop calendars has been shown in some regions to improve yield under warming scenarios. Other agronomic tweaks include reducing crop duration: planting short-duration varieties (e.g. 100-day rice) in extremely hot zones to escape terminal heat. Precise nutrient management is also critical: balanced fertilization (tailored N-P-K rates) and use of organic amendments (farmyard manure, green manure) improve soil health and water-holding capacity, thereby buffering crops against droughts.
- 3.3. Water-Saving Irrigation: Improved water management is both an adaptation and mitigation strategy. Alternate Wetting and Drying (AWD) intermittent irrigation instead of continuous flooding can reduce water use by ~20–40% without yield loss, while cutting methane emissions (a climate benefit). Likewise, System of Rice Intensification (SRI) methods (wider spacing, young seedlings, intermittent irrigation, mechanical weeding, and more organic matter) have raised yields in many Indian districts. SRI plants develop stronger roots and higher yields under stress. For example, studies report 20–50% higher yields with SRI than conventional methods, along with 50% less water use. Aerobic rice and direct-seeded rice techniques (promoted under NICRA) similarly use less water and labour. In areas facing drought, small-scale water harvesting (bunds, farm

ponds) and improved on-farm water use efficiency (drip or sprinkler for piped systems) can help meet rice water needs.

- **3.4.** Crop Diversification and Rotation: Introducing other crops in the rice-based system can spread risk. In eastern India and other rice-fallow regions, planting short-duration pulses (e.g. mung bean, lentil) or oilseeds after kharif rice can utilize residual moisture and provide additional income. Such **greening of rice fallows** both diversifies farmers' portfolios and improves soil fertility through nitrogen fixation. Crop rotation (e.g. adding millets, pulses or vegetables) also breaks pest/disease cycles and can improve resilience. Diversification is a recommended strategy in national climate adaptation plans (Kumar et al., 2025).
- 3.5. Soil and Nutrient Management: Practices that improve soil organic matter (e.g. cover cropping, mulching, composting) enhance resilience. Healthier soils retain moisture longer during dry spells and support more robust crops under heat. Integrated Nutrient Management (combining chemical fertilizers with organic manure and biofertilizers) maintains yield stability under stress. For example, zinc and silicon applications have been shown to boost rice heat tolerance by improving pollen viability (as found in ICAR studies). Community knowledge-sharing (e.g. farmer field schools) helps disseminate best soil management practices.
- **3.6. Disaster Preparedness:** In flood-prone areas, using floating rice varieties or staggered planting dates (so some fields can be harvested before worst floods) reduces risk. Where salinity is rising (e.g. in Bay of Bengal deltas), salt-tolerant varieties and soil amendments (gypsum, sand mulches) can be used. Crop insurance and early-warning systems help farmers manage unavoidable crop losses from cyclones or droughts.

Overall, adaptation involves combining improved inputs (seed, water, nutrients) with climate-smart agronomic methods. The Government's NICRA project has demonstrated these in 448 "climate resilient villages" across 151 districts. Importantly, many adaptation measures (e.g. SRI, AWD, cover cropping) also mitigate greenhouse gases from rice fields (e.g. reduced methane, better soil carbon) while boosting productivity. Thus, they align productivity and environmental goals.

4. Conclusion

India's rice sector faces significant challenges from climate change. Modelling and field evidence show that higher temperatures and erratic rainfall threaten to reduce yields substantially—especially in rainfed, heat stressed regions. Without action, national rice production could decline by 20–40% by 2080. However, targeted adaptation can close much of this gap. Research consistently finds that the right combination of resilient varieties and management practices can offset climate damages and even improve yields. For example, simulation studies in Uttar Pradesh indicate that advanced planting and irrigation management could mitigate yield declines by up to 20%; similarly, Andhra and Odisha field trials have shown yield gains under AWD/SRI even in hot years.

This review underscores that the impacts of climate change on Indian rice are real and uneven: northern and central India's irrigated plains may see modest loss, whereas rainfed eastern and western belts face larger swings. Adaptation is not optional but a necessity. Policymakers must support farmers through technology (subsidizing stress-tolerant seeds, irrigation), training (extension on planting date adjustments, SRI/AWD), and finance (insurance, credit for investment). Continued monitoring of on-farm trials and updated crop models (including socioeconomic factors) will refine our strategies.

References

- Datta, P., & Behera, B. (2022). Climate change and Indian agriculture: A systematic review of farmers' perception, adaptation, and transformation. *Environmental Challenges*, *8*, 100543.
- Government of India, Ministry of Agriculture & Farmers Welfare. (2024, Dec 17). Development of Climate-Resilient Paddy Varieties (Press release). Press Information Bureau.
- Harithalekshmi, V., & Ajithkumar, B. (2024). Simulating climate change impact on rice yield in different agroclimatic zones of Kerala using CERES-rice model. *Annals of Agricultural Research*, 45(4), 323–329.
- IPCC. (2022). *Climate Change 2022: Impacts, Adaptation and Vulnerability*. Contribution of Working Group II to the Sixth Assessment Report. [Chapter 10: Asia].
- Kumar, R., Das, A., Mondal, S., Upadhyay, P. K., Bhatt, B. P., Mishra, J. S., ... & Chaudhari, S. K. (2025). Greening rice-fallow areas: integrating pulses and oilseeds for sustainable cropping in eastern India. *Frontiers in Sustainable Food Systems*, *9*, 1502759.

- Li, N., Zhao, Y., Han, J., Yang, Q., Liang, J., Liu, X., Wang, Y., & Huang, Z. (2024). Impacts of future climate change on rice yield based on crop model simulation-A meta-analysis. *The Science of the total environment*, 949, 175038. https://doi.org/10.1016/j.scitotenv.2024.175038
- Li, C., Camac, J., Robinson, A., & Kompas, T. (2025). Predicting changes in agricultural yields under climate change scenarios and their implications for global food security. *Scientific Reports*, 15(1), 2858. https://doi.org/10.1038/s41598-025-87047-y
- Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., ... & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. *Proceedings of the National Academy of Sciences*, 101(27), 9971-9975.
- Ren, H., Bao, J., Gao, Z., Sun, D., Zheng, S., & Bai, J. (2023). How rice adapts to high temperatures. *Frontiers in Plant Science*, *14*, 1137923.
- Shrestha, S., Mahat, J., Shrestha, J., K C, M., & Paudel, K. (2022). Influence of high-temperature stress on rice growth and development. A review. *Heliyon*, 8(12), e12651. https://doi.org/10.1016/j.heliyon.2022.e12651
- Singh, J., Sahany, S., Singh, K. K., & Robock, A. (2024). Future climate change impacts on rice in Uttar Pradesh, India's most populous agrarian state. *Earth's Future*, 12(5), e2023EF004009. http://dx.doi.org/10.1029/2023EF004009

CHAPTER 7

The Climate-Soil Nexus: Unraveling the Impact of Climate Change on Soil Health

Rupsa Dutta, Sudip Sengupta*

Department of Agriculture, Swami Vivekananda University, Barrackpore 700121, Kolkata, West Bengal, India

*Corresponding author: sudips@svu.ac.in

Abstract

Soil health is a critical component of sustainable agriculture and ecosystem resilience, yet it is increasingly threatened by climate change. This article explores the intricate relationship between climate variables—such as temperature, precipitation, and extreme weather events—and their effects on soil health. Climate change can lead to soil degradation through mechanisms such as increased erosion, nutrient depletion, and altered microbial activity. These changes not only impact agricultural productivity but also affect carbon sequestration capabilities, further exacerbating climate change. Understanding how climate influences soil health is essential for developing adaptive management strategies that enhance soil resilience. This article discusses the implications of these interactions and highlights best practices for maintaining soil health in a changing climate, emphasizing the need for integrated approaches that consider both agricultural practices and environmental stewardship. By fostering healthy soils, we can mitigate climate impacts while ensuring food security and ecosystem sustainability.

Keywords

Climate Change, Soil Health, Soil Degradation, Sustainable Agriculture, Carbon Sequestration, Ecosystem Resilience

1. Introduction

Soil, the thin layer of mineral and organic material enveloping the Earth's surface, is fundamental to terrestrial life. It supports food production, regulates water and nutrient cycles, stores carbon, and forms a critical component of the Earth's climate system. Healthy soil is vital for sustainable agriculture, food security, and environmental balance. However, this precious resource is increasingly threatened by anthropogenic pressures—chief among them, climate change. The escalating crisis of global climate change is altering weather patterns, increasing the frequency of extreme events, and disrupting biogeochemical cycles, all of which have profound and multifaceted impacts on soil health.

Climate change, driven primarily by the accumulation of greenhouse gases (GHGs) such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), has manifested through rising global temperatures, erratic precipitation, intensified droughts, floods, and heatwaves. These climatic perturbations affect soil structure, water retention capacity, organic matter dynamics, microbial communities, and overall fertility. The interplay between climate and soil is complex and bidirectional: while climate change affects soil functions, soil itself plays a role in climate regulation by storing or emitting carbon and other GHGs, thus influencing global feedback loops

(Lal, 2004; Smith et al., 2008).

Understanding this climate-soil nexus is critical for guiding sustainable land management and climate mitigation strategies. Soils, as dynamic living systems, respond to climate variability through changes in physical, chemical, and biological properties. For example, increasing temperatures can accelerate organic matter decomposition and alter microbial community structures, potentially reducing soil organic carbon stocks (Davidson & Janssens, 2006). Changes in precipitation patterns may lead to enhanced erosion, waterlogging, or desertification, all of which degrade soil quality and threaten crop productivity.

In agrarian economies such as India's, where livelihoods are closely tied to the land, the impacts of climate change on soil health have far-reaching implications. Declining soil fertility, increasing salinity, and greater susceptibility to pests and diseases due to climatic shifts could severely hamper food production and rural stability (Aggarwal et al., 2019). Furthermore, marginal soils in arid and semi-arid zones are particularly vulnerable to degradation under climate stress, often leading to a vicious cycle of land abandonment and poverty.

The scientific discourse on climate change has traditionally focused on its impacts on water resources, biodiversity, and agricultural yields. However, only in recent decades has the soil emerged as a central player in this narrative. The recognition of soil as both a victim and a tool in the climate crisis has opened new avenues for research, particularly in climate-smart agriculture, regenerative practices, and ecosystem-based adaptation (FAO, 2017). Emphasizing soil health in climate policy frameworks can significantly enhance our capacity to meet sustainability goals, including the Sustainable Development Goals (SDGs), especially SDG 2 (Zero Hunger), SDG 13 (Climate Action), and SDG 15 (Life on Land).

Moreover, the dynamic nature of soil's interactions with climate parameters necessitates a multidisciplinary approach to understanding and mitigating the risks. Advances in geospatial analysis, modeling tools, and long-term ecological monitoring now allow scientists to assess soil-climate interactions with greater accuracy. Yet, data gaps persist, particularly in developing regions where limited research infrastructure and socioeconomic constraints hinder integrated soil-climate assessments (Paustian et al., 2016).

This review aims to comprehensively examine the intricate relationship between climate change and soil health. We explore how rising temperatures, shifting precipitation regimes, and increased frequency of extreme events alter soil physical, chemical, and biological properties. Special emphasis is given to the feedback mechanisms through which soils influence climate—particularly via carbon sequestration and GHG emissions. The review also outlines region-specific impacts, presents case studies, and proposes adaptive and mitigation strategies for sustainable soil management in the face of climate change.

By synthesizing current knowledge and highlighting emerging trends, this article seeks to bridge the gap between climate science and soil management, providing insights to researchers, policymakers, and practitioners alike. Ultimately, maintaining and restoring soil health in a changing climate is not just an environmental imperative but also a socio-economic necessity—central to ensuring food security, ecosystem services, and the resilience of human societies.

2. Understanding Soil Health: Definitions and Indicators

2.1. Defining Soil Health

Soil health—also referred to as soil quality—is a holistic concept that encapsulates the ability of

soil to function as a vital living system within ecosystems and landscapes, sustaining plants, animals, and humans. It encompasses biological integrity, chemical composition, and physical structure, and reflects the soil's capacity to perform essential functions such as supporting plant growth, regulating water, recycling nutrients, and buffering environmental stresses (Doran & Zeiss, 2000; Karlen et al., 1997).

The USDA Natural Resources Conservation Service (NRCS) defines soil health as "the continued capacity of soil to function as a vital living ecosystem that sustains plants, animals, and humans" (USDA-NRCS, 2012). This definition stresses the importance of managing soils not merely as inert media but as living entities, with complex and dynamic interactions among their physical, chemical, and biological components.

Unlike soil fertility, which traditionally focuses on nutrient availability for crops, soil health is a broader concept that includes biological activity, structural stability, and resilience to stressors, including those imposed by climate change. A healthy soil maintains productive capacity over time and resists degradation under environmental and anthropogenic stress (Lal, 2016).

2.2. Key Functions of Healthy Soils

Healthy soils perform multiple critical ecosystem services, including:

- Support for plant growth: Providing anchorage, water, and nutrients essential for crops.
- Water regulation: Infiltration, storage, and filtration of water; prevention of floods and droughts.
- Nutrient cycling: Decomposition of organic matter and mineralization of nutrients.
- Carbon sequestration: Long-term storage of carbon in soil organic matter (SOM).
- **Biodiversity habitat:** Supporting microbial and faunal communities essential for ecosystem functioning.
- **Buffering and filtering pollutants:** Reducing the movement of contaminants into groundwater and waterways.

These functions are interlinked and governed by complex interactions between biotic and abiotic components within the soil system.

2.3. Indicators of Soil Health

Quantifying soil health is inherently challenging due to its multifaceted and dynamic nature. However, soil scientists have identified several measurable indicators, broadly categorized into physical, chemical, and biological metrics, to assess soil health (Andrews et al., 2004).

2.3.1. Physical Indicators

- Soil structure and aggregation: Well-structured soils with stable aggregates are resistant to erosion and promote water infiltration.
- **Bulk density:** Indicates compaction; higher values often correlate with restricted root growth and poor aeration.
- **Porosity and water-holding capacity:** Reflects the soil's ability to store water for plant use and sustain microbial life.

• **Infiltration rate:** Measures the rate at which water enters soil, influencing drought resilience and erosion risk.

2.3.2. Chemical Indicators

- Soil pH: Affects nutrient availability and microbial activity; extremes can limit crop productivity.
- Cation exchange capacity (CEC): Represents the soil's ability to hold and exchange nutrients.
- **Nutrient availability:** Levels of macro (N, P, K) and micronutrients (Zn, Fe, Mn) critical for plant growth.
- Electrical conductivity (EC): Used to assess soil salinity, which can impair plant-water relations.

2.3.3. Biological Indicators

- Soil organic carbon (SOC): A key indicator of soil fertility, structure, and microbial activity.
- **Microbial biomass and respiration:** Reflects biological activity and the metabolic potential of soil microbes.
- Enzyme activities (e.g., dehydrogenase, urease): Provide insights into nutrient cycling processes.
- Soil biodiversity (e.g., microbial communities, earthworms): Essential for ecological balance and resilience.

2.4. Soil Health and Resilience

Resilience refers to the soil's capacity to recover its structure and function following disturbance. In the context of climate change, resilience becomes a critical measure of soil health. Soils with high organic matter, diverse microbial communities, and stable structure are better able to withstand extreme weather events such as droughts and floods (Powlson et al., 2011).

Climate-resilient soils maintain functionality under fluctuating temperature and moisture regimes. For instance, soils with high microbial diversity may recover more quickly from heat-induced stress, while those with well-developed aggregation may resist erosion during intense rainfall events.

2.5. Integrated Soil Health Assessment Approaches

Given the multifactorial nature of soil health, integrated frameworks are essential for effective monitoring. Several composite indices and tools have been developed:

- Soil Management Assessment Framework (SMAF): Integrates multiple indicators to evaluate the effects of land management practices on soil functions.
- Comprehensive Assessment of Soil Health (CASH): Developed by Cornell University, it assesses 15 key indicators across physical, chemical, and biological dimensions.
- Soil Health Card (India): A government initiative aimed at guiding farmers on nutrient management based on laboratory analysis of key soil parameters.

These approaches, while valuable, often face limitations in data availability, consistency, and site specificity. Incorporating local knowledge, remote sensing technologies, and decision support tools can enhance their applicability.

2.6. Soil Health in the Context of Climate Change

The health of soil systems is not static; it is increasingly shaped by the pressures of a changing climate. Rising temperatures can accelerate microbial respiration and organic matter decomposition, leading to reduced carbon stocks. Altered rainfall patterns may exacerbate soil erosion or waterlogging, depending on regional hydrology. Extreme weather events can disrupt soil structure and reduce biological activity.

Moreover, feedback loops between climate and soil—such as reduced organic carbon leading to higher atmospheric CO₂—underscore the need for integrated soil-climate assessments. Healthy soils are more capable of sequestering carbon and buffering against the impacts of climate change, making them a vital component of climate mitigation strategies (Lal, 2020).

2.7. Challenges in Soil Health Monitoring

Despite growing awareness, several challenges hinder comprehensive soil health monitoring:

- Variability and scale: Soil properties vary spatially and temporally, complicating sampling and interpretation.
- Lack of standardization: Differing methodologies across regions and institutions can lead to inconsistent results.
- **Insufficient data:** Particularly in low-income and developing regions, where regular soil testing is rare.
- Climate uncertainty: Projecting future climate-soil interactions requires robust models and high-resolution data.

Addressing these gaps requires investment in long-term monitoring networks, harmonized protocols, and interdisciplinary research efforts that link soil science with climatology, ecology, and socioeconomics.

3. Overview of Climate Change: Key Drivers and Trends

3.1. Introduction to Climate Change

Climate change refers to long-term shifts in temperatures and weather patterns, primarily driven by human activities—particularly the burning of fossil fuels, deforestation, and intensive agriculture. These activities release greenhouse gases (GHGs) that trap heat in the Earth's atmosphere, resulting in global warming and altered climatic conditions. The Intergovernmental Panel on Climate Change (IPCC) has unequivocally stated that anthropogenic influences are the dominant cause of observed climate warming since the mid-20th century (IPCC, 2021).

The consequences of these changes extend across physical systems (e.g., melting glaciers, sealevel rise), biological systems (e.g., species migration), and socio-economic systems (e.g., agricultural disruptions). Among these, impacts on soil systems are particularly critical due to their influence on food production, water regulation, carbon cycling, and ecosystem health.

3.2. Greenhouse Gases and Their Sources

The key GHGs influencing Earth's climate are:

- Carbon Dioxide (CO₂): Accounts for ~76% of global GHG emissions. Major sources include fossil fuel combustion, deforestation, and land-use changes.
- Methane (CH₄): A more potent GHG than CO₂, it originates from ruminant digestion, rice paddies, and anaerobic decomposition in wetlands and landfills.
- Nitrous Oxide (N_2O): Emitted through the use of synthetic fertilizers and organic manure, as well as from industrial processes and fossil fuel combustion.
- **Fluorinated gases:** Industrially produced, with extremely high global warming potentials (GWPs), though present in smaller quantities.

Agricultural practices contribute significantly to methane and nitrous oxide emissions, while landuse change and deforestation exacerbate CO₂ emissions and reduce the planet's carbon sink capacity (Smith et al., 2014).

3.3. Global Trends in Climate Parameters

3.3.1. Temperature Rise

According to the IPCC Sixth Assessment Report (AR6), the average global surface temperature has increased by approximately **1.1°C** above pre-industrial levels by 2021. If current emission trends continue, the world is likely to surpass the 1.5°C threshold within the next two decades (IPCC, 2021).

Rising temperatures accelerate evaporation, alter precipitation patterns, and intensify extreme weather events. Soil systems are particularly vulnerable to thermal stress, which affects microbial activity, organic matter decomposition, and nutrient availability.

3.3.2. Changing Precipitation Patterns

Climate change is reshaping precipitation regimes across the globe:

- Increased rainfall intensity in humid regions leads to flooding, waterlogging, and soil erosion.
- Decreased rainfall in arid zones leads to drought, salinization, and desertification.
- Altered monsoon patterns in South Asia and Sub-Saharan Africa disrupt planting cycles and reduce agricultural productivity.

These changes impair the soil's ability to store water and nutrients, impacting plant growth and microbial life (Trenberth et al., 2014).

3.3.3. Extreme Weather Events

Climate change has led to a rise in the frequency and severity of extreme events, including:

- **Heatwaves:** Accelerate moisture loss from soil, affecting seed germination and plant survival.
- Floods: Disrupt soil structure, leach nutrients, and reduce microbial diversity.
- **Droughts:** Reduce soil moisture content, impair microbial processes, and increase wind erosion risks.
- Cyclones and storms: Physically displace topsoil and damage root structures.

These episodic stresses have long-term impacts on soil health, as they increase the risk of degradation, compaction, and organic matter loss (Westra et al., 2013).

3.4. Regional Climate Change Projections

Climate impacts are not evenly distributed; regions will experience varying degrees of change based on their geographic, ecological, and socio-economic contexts.

3.4.1. South Asia

- **Projected warming:** 1.7–2.6°C by 2050 under medium-emission scenarios.
- **Precipitation:** Likely increase in monsoonal intensity but greater intra-seasonal variability.
- **Soil Impacts:** Enhanced erosion, drought spells, and increased risk of salinization in coastal areas (Krishna Kumar et al., 2011).

3.4.2. Sub-Saharan Africa

- **Temperature:** Expected to rise faster than the global average.
- Rainfall: Highly uncertain; increased variability may lead to both droughts and floods.
- Soil Impacts: Accelerated land degradation and declining soil fertility in vulnerable drylands.

3.4.3. Arctic and Boreal Regions

- Rapid warming: Arctic warming is occurring at nearly twice the global average.
- Soil Impacts: Thawing permafrost releases large amounts of carbon and disrupts microbial functioning (Schuur et al., 2015).

3.4.4. Mediterranean and Middle East

- **Temperature:** Significant increase with declining rainfall.
- Soil Impacts: Intensified desertification and salinization of irrigated lands.

3.5. Climate Feedback Mechanisms Involving Soils

Soils not only suffer from climate change—they also contribute to it through feedback loops:

- **Positive feedback:** Warming accelerates organic matter decomposition → more CO₂ released → further warming.
- Negative feedback: Improved soil management (e.g., afforestation, conservation tillage) enhances carbon sequestration → reduces atmospheric CO₂.

The management of soil carbon stocks is central to climate mitigation efforts. Even small changes in global soil carbon content can significantly affect atmospheric CO₂ concentrations (Smith et al., 2008).

3.6. International Policy Frameworks

Numerous global initiatives recognize the importance of soil-climate linkages:

• United Nations Framework Convention on Climate Change (UNFCCC): Includes land use and soil management in Nationally Determined Contributions (NDCs).

- 4 per 1000 Initiative: Aims to increase global soil carbon stocks by 0.4% annually as a climate mitigation strategy (Minasny et al., 2017).
- UN Sustainable Development Goals (SDGs): SDG 13 (Climate Action) and SDG 15 (Life on Land) promote sustainable land and soil use.

However, mainstreaming soil health into climate policy remains limited. Enhanced integration is needed to support climate-resilient agriculture and ecosystem services.

4. Mechanisms of Climate Change Impact on Soil

Climate change impacts soil health through a combination of direct and indirect pathways. These effects manifest via changes in temperature, precipitation patterns, atmospheric CO₂ concentrations, and the frequency of extreme weather events. Each of these climatic drivers interacts with soil physical, chemical, and biological components, sometimes in synergistic or antagonistic ways, depending on regional contexts and land management practices. This section dissects the mechanisms through which various climate variables affect soil systems.

4.1. Temperature Effects on Soil Health

4.1.1. Accelerated Organic Matter Decomposition

Rising temperatures enhance microbial activity, which in turn accelerates the decomposition of soil organic matter (SOM). While this temporarily increases the availability of nutrients, it reduces long-term soil carbon stocks, particularly in poorly managed soils (Davidson & Janssens, 2006). As SOM is vital for aggregation, moisture retention, and nutrient supply, its depletion compromises soil resilience.

4.1.2. Soil Respiration and Greenhouse Gas Emissions

Warmer soils typically exhibit higher respiration rates, leading to increased CO₂ emissions. In some soils, this also promotes the release of N₂O and CH₄ under specific moisture conditions, contributing to atmospheric warming in a feedback loop (Luo et al., 2001). High temperatures also affect enzyme activities and alter the stoichiometry of microbial metabolism.

4.1.3. Thermal Stress on Soil Biota

Excessive heat can stress or kill temperature-sensitive microbial and faunal communities, reducing biodiversity and impairing nutrient cycling. Shifts in microbial community composition toward thermophilic or heat-tolerant species may have long-term consequences on soil biochemical pathways (Zhou et al., 2012).

4.2. Precipitation Variability and Soil Dynamics

4.2.1. Soil Erosion and Surface Runoff

Increased rainfall intensity leads to higher surface runoff and soil erosion, especially on sloped terrain or poorly vegetated land. This results in the loss of topsoil, organic matter, and nutrients. Eroded soils are often less fertile and more compacted, impairing root penetration and water infiltration (Nearing et al., 2004).

4.2.2. Waterlogging and Anaerobiosis

In wetter regions, prolonged waterlogging depletes oxygen from soil pores, causing anaerobic conditions that hinder root respiration and microbial aerobic functions. These conditions favor denitrification, resulting in the release of N₂O and CH₄, potent greenhouse gases (Saggar et al.,

2013).

4.2.3. Drought and Soil Desiccation

Drought reduces soil moisture, impairing microbial activity, reducing plant nutrient uptake, and increasing dust emission and wind erosion. Repeated drying and wetting cycles can break down soil aggregates and further degrade structure and porosity (Schimel et al., 2007).

4.3. Extreme Weather Events

4.3.1. Cyclones and Floods

Storm surges and cyclones lead to severe land inundation, salinization in coastal soils, and complete topsoil displacement. The associated physical damage to soil layers affects infiltration, root zone dynamics, and biological life (Williams et al., 2008).

4.3.2. Heatwayes

Extended heat periods reduce soil moisture and increase evapotranspiration. Heatwaves can denature enzymes and deactivate certain microbial species, altering community composition and reducing biochemical functionality (Bolliger et al., 2010).

4.3.3. Wildfires

Rising temperatures and droughts heighten wildfire risks, which can combust surface organic matter, sterilize soils, and alter pH, cation exchange capacity, and hydrophobicity. Recovery of post-fire soils may take years, depending on vegetation and climatic conditions (Certini, 2005).

4.4. Elevated Atmospheric CO₂ Concentrations

Increased CO₂ levels can influence soil through plant-mediated pathways. Enhanced photosynthesis under elevated CO₂ often results in increased root biomass and exudation, potentially stimulating microbial activity and carbon inputs to the soil. However, this can also lead to priming effects where microbial decomposition of native SOM is accelerated, potentially offsetting carbon gains (Zak et al., 2000).

4.5. Indirect Effects via Vegetation Changes

Climate-induced changes in vegetation cover and species composition can indirectly affect soil. For instance:

- Shifting crop zones can alter residue quality and quantity, affecting SOM formation.
- Forest to grassland transitions change litter input and mycorrhizal associations, with consequences for nutrient cycling and microbial ecology.
- Reduced vegetation cover increases exposure of bare soil to wind and water erosion, especially during dry seasons.

Vegetation change also alters root architecture and depth, which influences water infiltration, soil porosity, and carbon distribution (Bever et al., 2010).

4.6. Altered Soil Microbial Communities

Microorganisms are the engine of soil biochemical processes. Climate change alters:

• **Microbial community composition**: Some bacterial and fungal groups are more sensitive to temperature and moisture stress.

- Functional gene expression: Stress alters gene expression related to nitrogen fixation, decomposition, and other metabolic processes.
- **Symbiotic relationships**: Disruption in plant-microbe interactions, such as mycorrhizal associations or nitrogen-fixing bacteria, affects plant nutrition and growth (Allison & Martiny, 2008).

These shifts may undermine key soil functions, reduce resilience to future stressors, and affect plant-soil feedback loops.

4.7. Soil Salinization and Desertification

Increased evapotranspiration and reduced freshwater availability in arid and semi-arid regions can lead to **secondary salinization**. The accumulation of salts near the soil surface inhibits plant growth, reduces microbial diversity, and degrades structure. Similarly, desertification—a process of land degradation in drylands—intensifies under climate stress and poor management, leading to irreversible soil health loss (Thomas et al., 2005).

4.8. Climate-Driven Nutrient Cycling Disruptions

- **Nitrogen cycling**: Altered temperature and moisture affect nitrification and denitrification rates, influencing nitrogen availability and gaseous losses (Butterbach-Bahl et al., 2013).
- **Phosphorus availability**: Changes in soil redox potential under waterlogged conditions can immobilize phosphorus, reducing its uptake.
- **Micronutrient dynamics**: Extreme weather events can leach or concentrate micronutrients, disrupting plant nutrition and soil fertility.

4.9. Summary of Mechanistic Pathways

Climate Driver Direct Soil Impact

Soil Function Affected

Temperature rise	Faster decomposition, microbial stress	Organic matter, microbial activity
Erratic rainfall	Erosion, runoff, waterlogging	Soil structure, nutrient leaching
Drought	Desiccation, reduced biological activity	Nutrient cycling, aggregation
Extreme events	Physical disruption, loss of topsoil	Resilience, productivity
Elevated CO ₂	Root growth stimulation, SOM priming	Carbon sequestration, microbial respiration

4.10. Interactions and Feedback Loops

The mechanisms discussed above rarely operate in isolation. For example, increased rainfall intensity combined with poor land cover can magnify erosion, leading to topsoil loss and GHG emissions. Similarly, warming combined with drying can intensify SOM loss and reduce microbial biodiversity, which feeds back into poor soil structure and lower water retention.

Understanding these interactions is vital for developing predictive models and targeted interventions. The complexity of these mechanisms necessitates long-term, interdisciplinary studies that integrate climatology, soil science, plant physiology, and socioeconomics.

5. Climate-Smart Soil Management Practices

Climate-smart soil management encompasses strategies that simultaneously improve soil health, adapt to climate change, and reduce greenhouse gas emissions. These practices are critical for enhancing the resilience and productivity of agricultural systems in the face of climate uncertainty.

Conservation Agriculture

Conservation agriculture (CA) is built on three core principles:

- Minimal soil disturbance (reduced or zero tillage)
- Permanent soil cover using crop residues or cover crops
- Crop diversification through rotation and intercropping

CA improves soil structure, reduces erosion, enhances water retention, and promotes biological activity (Hobbs et al., 2008).

Organic Matter Management

Incorporating organic inputs such as farmyard manure, compost, crop residues, and green manure enhances soil organic carbon (SOC), improves aggregation, and boosts microbial diversity. This also improves nutrient availability and buffering capacity against climate-induced stress (Lal, 2004).

Agroforestry Systems

Agroforestry integrates trees and shrubs with crops and/or livestock. Trees contribute leaf litter, provide shade, and reduce wind erosion. Their deep roots stabilize soil and improve nutrient cycling (Jose, 2009). Agroforestry systems also serve as long-term carbon sinks.

Integrated Nutrient Management (INM)

INM combines organic and inorganic nutrient sources, enhancing nutrient use efficiency and minimizing GHG emissions associated with synthetic fertilizers. Proper timing and placement of fertilizers reduce nitrogen losses and improve plant uptake (Palm et al., 2001).

Biochar Application

Biochar, a form of charred biomass, improves soil structure, enhances water retention, and sequesters carbon. It also stabilizes pH and reduces nutrient leaching. Biochar can mitigate emissions of N₂O and CH₄ under certain conditions (Lehmann & Joseph, 2009).

Water Conservation and Harvesting

Water-efficient practices like drip irrigation, mulching, and rainwater harvesting maintain soil moisture under erratic rainfall regimes. Maintaining optimal soil moisture is critical for microbial survival and nutrient transformations.

Soil Testing and Precision Agriculture

Use of soil health cards, remote sensing, and GIS tools enable site-specific interventions that minimize input use and maximize soil function. Precision nutrient application helps mitigate losses

and optimize yields.

Land Restoration Techniques

In degraded areas, interventions like terracing, reforestation, controlled grazing, and cover cropping help rebuild soil organic matter, reduce erosion, and restore soil function over time (UNCCD, 2017)

6. Role of Policy and Governance

Policy frameworks at the national and global levels play a critical role in promoting sustainable soil management and integrating climate resilience into agricultural systems.

Global Frameworks Supporting Soil Health

- The 4 per 1000 Initiative (2015): Promotes increasing global SOC stocks by 0.4% annually to mitigate climate change.
- UN Sustainable Development Goals (SDGs): Especially SDG 2 (Zero Hunger), SDG 13 (Climate Action), and SDG 15 (Life on Land) prioritize sustainable soil use.
- UNCCD (United Nations Convention to Combat Desertification): Emphasizes land degradation neutrality by 2030.

National Policies in India

- Soil Health Card Scheme: Helps farmers make informed nutrient management decisions.
- National Mission for Sustainable Agriculture (NMSA): Focuses on climate-resilient agriculture.
- Paramparagat Krishi Vikas Yojana (PKVY): Promotes organic farming practices that preserve soil health.

Gaps and Challenges in Governance

- **Fragmentation of responsibility**: Soil health intersects multiple ministries (agriculture, environment, water).
- Short-term policy vision: Often prioritizes yield over long-term sustainability.
- **Inadequate funding** for soil monitoring, capacity building, and education programs.

Needed Policy Reforms

- Mainstream soil health in climate adaptation planning and NDCs.
- **Incentivize ecosystem services** through payments to farmers for practices that enhance soil carbon or reduce emissions.
- Enhance monitoring networks to track soil degradation and recovery.
- Build capacity among extension workers, farmers, and researchers in soil-climate literacy.

7. Knowledge Gaps and Future Research Directions

Despite major advances, numerous research gaps impede our ability to fully understand and mitigate the impact of climate change on soil health.

- Many climate-soil interactions unfold over decades, yet long-term datasets are sparse, particularly in the Global South. Investment is needed in permanent monitoring plots, soil observatories, and open-access databases.
- Microbial responses to combined climate stressors (e.g., heat + drought) are poorly understood. Metagenomics and metabolomics could shed light on microbial adaptation mechanisms and functional shifts.
- Current Earth System Models (ESMs) inadequately represent soil carbon dynamics and feedbacks. Improved parameterization and integration of regional data are required for robust predictions (Todd-Brown et al., 2013).
- Local climatic conditions, land uses, and soil types differ vastly. Region-specific studies are essential to tailor interventions. Indigenous knowledge and farmer experience can supplement empirical research.
- Soil conservation must be economically viable for farmers. Behavioral studies on adoption of climate-smart practices, risk perception, and social incentives are urgently needed.

8. Conclusion

The nexus between climate change and soil health represents both a significant threat and a powerful opportunity. Climate stressors—rising temperatures, erratic precipitation, and extreme events—compromise the physical, chemical, and biological integrity of soils, thereby threatening food production, carbon storage, and ecosystem resilience. Yet, healthy soils can serve as a natural climate solution. They act as carbon sinks, regulate hydrological flows, and support biodiversity. Managing soils sustainably can reduce greenhouse gas emissions, adapt agriculture to climate risks, and promote land restoration. To harness this potential, an integrated approach is needed—linking science, policy, and practice. Adaptive management strategies such as conservation agriculture, agroforestry, integrated nutrient management, and precision farming must be promoted and supported by enabling policies and public investment. Crucially, climate and soil policies must converge. Soil health should not remain a secondary agenda but must be central to climate action, agricultural development, and ecosystem conservation. Bridging scientific knowledge with farmer wisdom, strengthening data systems, and fostering transdisciplinary research will be key to future resilience. As the climate crisis unfolds, the health of our soils will define the future of food, water, and planetary stability. Nurturing the ground beneath our feet is not only an agricultural necessity but a moral imperative—ensuring sustainability for generations to come.

References:

- Allison, S. D., & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. *Proceedings of the National Academy of Sciences*, 105(Supplement 1), 11512–11519.
- Bever, J. D., Platt, T. G., & Morton, E. R. (2010). Microbial population and community dynamics on plant roots and their feedbacks on plant communities. *Annual Review of Microbiology*, 64, 321–346.
- Bolliger, J., Tanadini, M., Holderegger, R., & Guisan, A. (2010). Heatwaves and soil processes. *Global Change Biology*, 16(6), 1815–1827.
- Butterbach-Bahl, K., Baggs, E. M., Dannenmann, M., Kiese, R., & Zechmeister-Boltenstern, S. (2013). Nitrous oxide emissions from soils: how well do we understand the processes and

- their controls? *Philosophical Transactions of the Royal Society B*, 368(1621), 20130122.
- Certini, G. (2005). Effects of fire on properties of forest soils: a review. *Oecologia*, 143(1), 1–10.
- Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature*, 440(7081), 165–173.
- Luo, Y., Wan, S., Hui, D., & Wallace, L. L. (2001). Acclimatization of soil respiration to warming in a tall grass prairie. *Nature*, 413(6856), 622–625.
- Nearing, M. A., Pruski, F. F., & O'Neal, M. R. (2004). Expected climate change impacts on soil erosion rates: a review. *Journal of Soil and Water Conservation*, 59(1), 43–50.
- Saggar, S., Giltrap, D. L., & Li, C. (2013). Modeling nitrous oxide emissions from dairy-grazed pastures. *Nutrient Cycling in Agroecosystems*, 95(1), 1–16.
- Schimel, J. P., Balser, T. C., & Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. *Ecology*, 88(6), 1386–1394.
- Thomas, R. J., Akhtar-Schuster, M., & Stringer, L. C. (2005). Desertification: A new paradigm for addressing the 'old' challenge of global dryland degradation. *Journal of Arid Environments*, 61(4), 533–544.
- Williams, B. L., Ineson, P., & Coward, P. A. (2008). Fire effects on soils in temperate ecosystems: A review. *Forest Ecology and Management*, 255(4), 933–946.
- Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO₂, fine roots and the response of soil microorganisms: a review and hypothesis. *New Phytologist*, 147(1), 201–222.
- Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., ... & Luo, Y. (2012). Microbial mediation of carbon-cycle feedbacks to climate warming. *Nature Climate Change*, 2(2), 106–110.
- IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC. Cambridge University Press.
- Krishna Kumar, K., Patwardhan, S. K., Kulkarni, A., Kamala, K., Rao, K., & Jones, R. (2011). Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). *Current Science*, 101(3), 312–326.
- Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., ... & Winowiecki, L. (2017). Soil carbon 4 per mille. *Geoderma*, 292, 59–86.
- Schuur, E. A., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J., ... & Natali, S. M. (2015). Climate change and the permafrost carbon feedback. *Nature*, 520(7546), 171–179.
- Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., ... & Smith, J. (2008). Greenhouse gas mitigation in agriculture. *Philosophical Transactions of the Royal Society B*, 363(1492), 789–813.
- Smith, P., Bustamante, M., Ahammad, H., Clark, H., Dong, H., Elsiddig, E. A., ... & Tubiello, F. N. (2014). Agriculture, Forestry and Other Land Use (AFOLU). In *Climate Change 2014: Mitigation of Climate Change*. Contribution of Working Group III to the Fifth Assessment Report of the IPCC.

- Trenberth, K. E., Fasullo, J. T., & Shepherd, T. G. (2015). Attribution of climate extreme events. *Nature Climate Change*, 5(8), 725–730.
- Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. *Journal of Climate*, 26(11), 3904–3918.
- Andrews, S. S., Karlen, D. L., & Cambardella, C. A. (2004). The soil management assessment framework: A quantitative soil quality evaluation method. Soil Science Society of America Journal, 68(6), 1945–1962.
- Doran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: Managing the biotic component of soil quality. *Applied Soil Ecology*, 15(1), 3–11.
- Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: A concept, definition, and framework for evaluation. *Soil Science Society of America Journal*, 61(1), 4–10.
- Lal, R. (2016). Beyond COP 21: Potential and challenges of the "4 per Thousand" initiative. *Journal of Soil and Water Conservation*, 71(1), 20A–25A.
- Lal, R. (2020). Soil organic matter is the foundation of sustainable agriculture. *Carbon Management*, 11(3), 207–212.
- Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2011). Soil management in relation to sustainable agriculture and ecosystem services. *Food Policy*, 36, S72–S87.
- USDA-NRCS (2012). *Soil Health: The Importance of Soil Biology*. United States Department of Agriculture, Natural Resources Conservation Service.

Page | 67

CHAPTER 8

Clonal Propagation of Elite Teak Varieties Through Somatic Embryogenesis Suprabuddha Kundu¹, Umme Salma²,

¹School of Agriculture, Swami Vivekananda University, Barrackpore, 700121, West Bengal, India ²Department of Agricultural Biotechnology, School of Agricultural Sciences, Sister Nivedita University, New Town, Kolkata, West Bengal 700156, India

*Corresponding author: suprabuddhak@svu.ac.in

Abstract:

Clonal propagation of elite teak (*Tectona grandis*) varieties through somatic embryogenesis offers a promising approach to improve the quality, uniformity, and productivity of teak plantations. Teak is a valuable hardwood species, prized for its wood quality and economic importance. However, its slow growth and natural regeneration constraints make traditional propagation methods inefficient. Somatic embryogenesis (SE), a tissue culture technique, allows for the production of genetically uniform plants from somatic cells, providing an effective means for clonal propagation of superior teak varieties. This method involves inducing somatic embryos from callus tissues, which are then cultured to regenerate plantlets capable of being transplanted into the field. The clonal plants produced via SE exhibit desirable traits such as improved growth rates, wood quality, and resistance to pests and diseases. Despite its potential, several challenges remain, including optimizing the culture conditions for somatic embryo development, improving the efficiency of plant regeneration, and addressing somaclonal variation. Recent advancements in SE protocols, including the use of growth regulators, optimized media compositions, and embryo maturation techniques, have significantly improved propagation efficiency. Furthermore, the integration of molecular tools, such as genetic screening and marker-assisted selection, holds promise for enhancing the reliability of clonal propagation and accelerating the breeding of elite teak varieties. This paper reviews the progress, challenges, and future perspectives of clonal propagation of teak through somatic embryogenesis, highlighting its potential to revolutionize teak plantation management and contribute to the sustainable production of high-quality teak wood.

Keywords: Clonal propagation, Genetic stability, Somatic embryogenesis, Tectona grandis

Introduction

Teak (*Tectona grandis* L.f., Verbenaceae) is one of the world's premier plantation hardwoods. It naturally occurs across India, Myanmar, Thailand and Laos and has been widely introduced in Africa (e.g. Côte d'Ivoire, Nigeria, Ghana) and Central/South America. Teak wood is prized for its strength, durability and fine grain, making it a high-value timber for furniture, shipbuilding, decking, and luxury furnishings. Large-scale teak plantations today produce millions of cubic meters of wood annually. However, traditional sexual propagation has significant drawbacks: teak seeds exhibit deep dormancy and low germination, and seedling-grown forests show wide genetic variability. To meet demand for uniform, high-yield plantations, foresters have long selected "elite" genotypes with superior traits (high wood density and heartwood percentage, straight boles, fast early growth) as clone sources. Such clones may also carry resistance to pests and pathogens (for example, teak is susceptible to leaf rust and powdery mildew) and tolerance of drought or poor soils. Clonal propagation ensures uniform stands and fixes these desirable traits in plantations. In India, Southeast Asia and tropical Africa, interest is growing in mass-propagating elite teak clones using in vitro methods.

Somatic embryogenesis – the induction of bipolar embryos from somatic (non-seed) cells – has been successfully applied in many woody species as an efficient method for clonal propagation. SE offers high multiplication rates and (in principle) genetic stability of regenerants. Compared to organogenesis (shoot proliferation) or vegetative cutting, SE can in theory yield very large numbers of plants from small amounts of starting tissue. This review traces the entire SE pipeline for teak, from explant selection through acclimatization, and surveys studies from major teak regions. We highlight biochemical and molecular markers (e.g. SERK, WUSCHEL) linked to embryogenic competence, and address key technical limitations. Finally, we describe recent innovations (automation, bioreactors, synthetic seeds, cryobanking) that promise to make clonal teak forestry more feasible and economical.

Somatic Embryogenesis Workflow Explant selection

The choice of starting tissue is critical for inducing teak SE. In teak, a variety of explants have been tested, including young leaf segments, nodal buds, shoot tips, apical meristems, and even immature seed tissues. For example, *in vitro* germinated seed cotyledons have been used successfully: Zhou *et al.* (2024) germinated teak seeds on MS basal medium and then cultured the expanded cotyledons on MS + 0.1 mg/L thidiazuron (TDZ) to induce embryogenic callus. Other workers have used juvenile shoot tips or buds. Nathalang (2012) reported that newly emerging leaves of teak placed on half-strength MS with 1.0 mg/L NAA + 1.0 mg/L BAP induced robust callus and embryogenic structures. Kushalkar and Sharon (1996) found that callus from apical buds on MS + 0.1 mg/L BAP + 0.01 mg/L NAA formed somatic embryos, and callus from axillary buds on half-strength MS with low BAP/NAA also produced embryos. In general, juvenile tissues (young leaves, buds, cotyledons) show higher embryogenic response than mature tissues, likely due to retained developmental plasticity.

Induction

Embryogenic induction typically requires specific combinations of plant growth regulators (PGRs). Auxins (especially 2,4-dichlorophenoxyacetic acid or α-naphthaleneacetic acid) at moderate concentrations are often used to induce embryogenic callus in teak, usually in combination with cytokinins. For instance, TDZ (a cytokinin-like PGR) can be highly effective: Zhou *et al.* found that 0.1 mg/L TDZ induced embryogenic callus from cotyledons. After callus initiation, subculture onto fresh induction medium (often with lowered auxin or added cytokinin) can proliferate the embryogenic cell clusters. At the molecular level, induction is marked by expression of certain key genes. In teak, *WUSCHEL (WUS)* and *Somatic Embryogenesis Receptor Kinase (SERK)* are well-established embryogenic markers. High expression of these genes correlates with the onset of embryogenic competence. (For example, *WUS* and *SERK* transcripts were found exclusively in embryogenic tissues of teak.) Monitoring such markers can help identify responsive genotypes.

Embryo development and maturation

Once embryogenic callus forms, it differentiates into somatic embryos through stages analogous to zygotic embryos. The developmental sequence – globular, heart-shaped, torpedo, and cotyledonary stages – proceeds in culture. During maturation, it is common to reduce or withdraw

auxin and sometimes to add abscisic acid (ABA) or increase sugar to promote embryo dormancy and storage compound accumulation. The embryos should be grown under appropriate temperature (often 24–26°C) and light conditions (sometimes darkness followed by light) to mature fully. In teak, Zhou *et al.* reported that embryogenic clusters on TDZ medium produced clearly defined heart- and torpedo-shaped embryos after several weeks. Maturation media are often hormone-free or supplemented with ABA to encourage conversion to cotyledonary embryos.

Embryo germination and plantlet regeneration

Mature somatic embryos are transferred to germination media to convert into plantlets. This usually involves hormone-free medium (often MS or WPM salts with low sucrose) under light to stimulate shoot and root growth. In some protocols, gibberellic acid (GA₃) or kinetin may be added to promote germination. In teak, germinating embryos typically enlarge, the shoot apex elongates, and true leaves form within 2–4 weeks. These shoots may be rooted on the same medium or transferred to a rooting medium (often half-strength MS with auxin like IBA) to ensure strong root development. Because embryogenic cultures can produce many embryos simultaneously, efficient germination is important for high multiplication rates.

Acclimatization

Regenerated plantlets must be acclimated to greenhouse or field conditions. Somatic embryoderived teak plantlets often have poorly developed cuticles and must be hardened gradually. Common practice is to transfer plantlets (with roots and at least one pair of leaves) to sterile potting mix (e.g. peat:sand), maintain high humidity initially (using mist or plastic cover), and slowly reduce humidity over 1–2 weeks. Light and temperature are adjusted to ambient conditions (e.g. 25°C, 50–70% humidity). Successful acclimatization protocols typically achieve 70–90% survival of rooted plantlets. This final stage is crucial: suboptimal acclimatization can negate gains from earlier steps.

Technical Challenges

Somatic embryogenesis in teak faces several technical limitations that constrain its efficiency and reproducibility. One major issue is genotype dependency. Not all teak genotypes respond equally to culture. In fact, as in many trees, SE is highly genotype-sensitive. A protocol that works well

for one clone may fail for another; considerable screening is often needed to identify responsive clones. This has been noted in teak, where only certain mother plants (or families) readily produce embryogenic tissue, while others are recalcitrant. Another challenge is low embryogenic yield. Even from responsive explants, the fraction of cells that become embryos is often small. Conversion rates (embryos per initial explant) and mature embryo yields remain relatively low in published teak studies (commonly on the order of dozens, not hundreds, per explant). High frequency of embryogenesis has proved elusive in many teak trials.

Somaclonal variation is a concern in any tissue culture process. Although SE tends to maintain genetic fidelity better than long-term callus culture, variations can still arise, especially after many subcultures. For teak, no extensive surveys of somaclonal variation have been published, but experience with other timber species suggests monitoring is prudent. Fortunately, one study in teak micropropagation found essentially identical RAPD marker profiles after 25 serial cycles of shoot culture, indicating high clonal stability (only a single polymorphic band was observed). This suggests that short-term SE with limited subculturing may produce genetically uniform clones, but detailed validation (e.g. with SSR or SNP markers) is recommended for commercial programs.

Scaling-up difficulties also impede commercialization. SE protocols are labor-intensive: each culture step requires skilled handling, sterile transfers, and selection of healthy callus or embryos. Contamination (fungal/bacterial) is always a risk, especially during repeated subcultures of callus. Converting many embryos into plantlets and hardening them also requires space and resources. The cost per plantlet via SE remains higher than conventional cuttings or grafting, unless economies of scale are achieved. Finally, physiological limitations such as phenolic oxidation and hyperhydricity can occur in teak cultures, as in other tropical species, leading to tissue browning or fragile plantlets. Optimizing media antioxidants or ventilation is often needed. In summary, while protocols exist to produce teak somatic embryos, further refinement is needed to overcome the low response rates, genotype restrictions, and high labor costs inherent in SE.

Advances and Applications

Despite the challenges, important advances have been made in teak clonal propagation that leverage SE and related technologies. Bioreactor and automated culture systems are being explored to boost productivity. For example, temporary immersion bioreactor (TIB) systems – where tissues

are periodically bathed in liquid medium – have shown promise. One study reported that a temporary immersion culture of teak shoot explants grew much more vigorously than identical explants on semisolid agar. By analogy, immersion culture could enhance proliferation of embryogenic callus and maturation of embryos by improving nutrient uptake and gas exchange. Such semi-automated systems can increase throughput and reduce labor for large-scale clone production. Likewise, vacuum or mist bioreactors have been used in other tropical trees and could be adapted for teak SE.

Synthetic seed technology offers another innovation. In this approach, somatic embryos (or embryogenic cell clusters) are encapsulated in a gel (usually alginate) to form "artificial seeds" that can be stored, transported, or planted directly. Synthetic seeds can simplify handling of delicate embryos and allow year-round field planting. Ara *et al.* (2000) pioneered this in several species, and it has been suggested for teak. Santos *et al.* discuss that combining SE with synthetic seed encapsulation could enable a continuous supply of clonal teak propagules. For instance, somatic embryos could be calcium-alginate-encapsulated, desiccated, and later germinated. This would be especially useful for distributing elite clones to planting sites without requiring on-site tissue culture facilities.

Cryopreservation for germplasm banking is another important tool. Embryogenic cultures require periodic subculture to remain viable, which is laborious and risks genetic drift. Cryostorage of embryogenic calli or zygotic embryos allows long-term preservation of selected genotypes. In teak, successful cryopreservation of shoot tips and embryogenic tissues has been reported using encapsulation-dehydration or vitrification protocols. For example, Tongsad *et al.* (2018) demonstrated that vitrification (PVS2 treatment) of teak shoot-tip explants followed by liquid nitrogen storage and rapid thawing gave excellent survival and regrowth. This approach can secure elite clones at ultra-low temperature for years or decades. The stored material can later be revived to restart SE cultures for mass propagation. Cryobanking therefore safeguards genetic fidelity and helps overcome the need for constant subculture.

Other emerging tools include molecular and biochemical markers of embryogenic potential. As mentioned above, upregulation of *WUS* and *SERK* transcripts is associated with embryogenesis in teak. In practical terms, screening explants for early expression of these markers (by qPCR or reporter genes) could predict which cultures will succeed, thus saving time. Likewise, profiling of endogenous hormones (auxins, cytokinins, ABA, etc.) at different SE stages has

provided insight into optimal culture conditions. Metabolite markers such as high polyamine or sugar content have been useful in other species and could be applied to teak. Finally, synthetic biology and genome-editing approaches may soon contribute: for instance, modifying key regulatory genes (via CRISPR) could theoretically enhance embryogenic capacity, although this remains speculative.

Future Perspectives

The future of clonal teak forestry will likely combine SE with advanced breeding and automation. On the genetics side, high-density genomic selection is becoming feasible. Callister *et al.* (2024) genotyped 33 Costa Rican teak clones and identified SNPs associated with growth, form, wood density and heartwood. They projected that integrating genomic prediction into breeding can accelerate the development of new elite clones. In practice, this means breeders can screen seedling populations for desirable alleles and then quickly fix them using SE. Moreover, the existence of a reference genome for teak enables genome-wide marker assays; in combination with SE, this enables a "selection-then-propagate" pipeline.

Robotic and AI technologies may also enhance SE throughput. Automated imaging and machine learning can detect embryogenic vs. non-embryogenic callus early, optimizing culture conditions. Bioreactor monitoring systems can control oxygen, light and nutrient levels to maximize yield. In addition, continued research into PGR and medium optimization (including new cytokinin analogs or micronutrients) will likely improve response rates. On the germplasm side, synthetic seed technology and cryobanks will become standard tools for genotype deployment and conservation.

Finally, lessons from other forestry SE programs (e.g., in *Eucalyptus* and *Picea*) will inform teak protocols. The capability to produce hundreds of plantlets per explant, and to do so cheaply, is the ultimate goal. If somatic embryogenesis can be reliably established for the best teak genotypes, it will enable clonal orchards and plantations yielding consistent, high-quality timber. This will meet the growing timber demand while conserving genetic resources. In summary, although challenges remain, the synergy of tissue culture advances, molecular biology, and automation promises to bring large-scale clonal propagation of elite teak within reach.

References

- Ball, J.B., Pandey, D., & Hirai, S. (1999). *Global overview of teak plantations*. In Proceedings of the Regional Seminar on Teak Plantation Programs (Bangkok, April 1999). FAO.
- Callister, A.N., Jiménez-Madrigal, J.P., Whetten, R.W., & Murillo, O. (2024). Genomic predictions and candidate single nucleotide polymorphisms for growth, form, and wood properties of teak clones. *Silvae Genetica*, **73**(1), 13–23.
- Kushalkar, R.D. & Sharon, M. (1996). Direct and indirect somatic embryogenesis in teak (*Tectona grandis* L.f.). *Current Science*, **71**, 712–715.
- Santos, A.F.A., Almeida, B.C., Gava, F.H., Favare, H.G., Barbosa Filho, J., Costa, R.B., & Brondani, G.E. (2014). *Clones production of Tectona grandis*. Advances in Forestry Science, **1**(2), 75–82.
- Tongsad, P., Laipasu, P., Chareonsap, P.P., & Poeaim, A. (2018). The effect of plant growth regulators and in vitro conservation of teak (*Tectona grandis* L.) by tissue culture. *International Journal of Agricultural Technology*, **14**(7), 2171–2180.
- Zhou, W.L., Yang, G., Pan, D.K., Wang, X.B., Han, Q., Qin, Y., Li, K.L., & Huang, G. (2024). Analysis of the plant hormone expression profile during somatic embryogenesis induction in teak (*Tectona grandis*). *Frontiers in Plant Science*, **15**, 1429575.

CHAPTER 9

A Comprehensive Review of AI Integrated Irrigation System: Advances Challenges, and Future Directions

Sahel Haque¹, Barsha Sabud¹, Madhumita Pramanik¹, Aman Kumar Shaw¹, Debkanta Giri¹ and Tanmoy Majhi^{1*}

¹School of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal

*Corresponding author: tanmoymajhi@svu.ac.in

ABSTRACT:

The world's population is increasing daily, which is causing a rise in the demand for food and the use of water in agricultural lands. Traditional irrigation methods have been used so far, but they lead to water wastage, which is a major challenge for both the environment and the economy. This review paper examines how AI-based irrigation systems work and their impact on agriculture. With these advanced systems, agricultural land can be watered with the precise amount of water needed, ensuring crops receive exactly what they require. The project not only enhances crop production but also reduces water wastage, improving water use efficiency. The introduction of AI in irrigation systems has played a crucial role in improving economic conditions by reducing labor costs and minimizing water usage. Research from various fields highlights the benefits and progress of AI-based irrigation systems. This innovation ensures better management of the valuable resource, water. The potential uses and future development of IoT and AI in agriculture are vast, aiming to simplify farming practices and make them more sustainable. This abstract provides a brief overview of the current situation and future opportunities for AI-powered irrigation systems, focusing on the importance of AI in addressing modern agricultural challenges.

Keywords: Agriculture, Remote sensing, IOT, Irrigation management, Crop yield optimization, Water use efficiency

1. Introduction

Agriculture, the backbone of the global economy and a major source of livelihood for billions, is facing unprecedented pressure. With the global population expected to exceed 9.7 billion by 2050,

the demand for food, fiber, and fuel is on the rise (FAO, 2017). Simultaneously, climate change, water scarcity, and environmental degradation present formidable challenges to agricultural productivity and sustainability. Among the various agricultural inputs, water remains one of the most critical and mismanaged resources. Traditional irrigation systems—such as surface, furrow, and flood irrigation—are inherently inefficient, often leading to significant water loss due to evaporation, percolation, and runoff (Koech & Langat, 2018).

To address these inefficiencies, precision irrigation has emerged as a sustainable alternative. In this context, artificial intelligence (AI) integrated with the Internet of Things (IoT) has shown great promise in revolutionizing irrigation practices. AI-based irrigation systems leverage data from various sources such as soil moisture sensors, weather stations, satellite imagery, and plant health indices to make informed decisions regarding when, where, and how much water to apply. These smart systems optimize water usage, minimize waste, and enhance crop yields, all while reducing labor and operational costs (Zhang et al., 2021).

Moreover, AI enhances the capacity of farmers to make proactive decisions by providing predictive insights. Algorithms can analyze historical and real-time data to forecast irrigation needs based on crop type, growth stage, and expected weather conditions. These systems offer a responsive irrigation model that adapts dynamically to changing environmental and crop conditions, thereby ensuring that water is used judiciously and efficiently (Jha et al., 2019).

This review aims to provide a comprehensive understanding of the advances in AI-powered irrigation systems, the technologies enabling their deployment, challenges faced during implementation, and the future trajectory of smart irrigation. It critically evaluates the comparative advantages over traditional systems and discusses how AI contributes to the larger goal of sustainable and climate-resilient agriculture.

2. Technological Advances in AI-Integrated Irrigation

The integration of artificial intelligence with irrigation systems has witnessed significant technological advancements over the past decade. These systems are characterized by the fusion of multiple digital technologies, including IoT sensors, cloud computing, wireless communication, machine learning algorithms, and satellite-based remote sensing.

At the core of an AI-integrated irrigation system are IoT sensors that monitor soil moisture,

ambient temperature, humidity, and solar radiation in real-time. These sensors collect vast datasets that are transmitted to cloud-based platforms where machine learning algorithms analyze the information to generate actionable insights. For instance, decision-tree models or support vector machines (SVMs) can be employed to determine optimal irrigation schedules for different crops and climatic conditions (Gutiérrez et al., 2014).

Remote sensing technology, including satellite and drone imagery, adds another layer of intelligence. Spectral data is used to calculate vegetation indices such as the Normalized Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI), which help assess crop health and stress levels (Sishodia et al., 2020). All algorithms correlate this data with irrigation requirements, thereby allowing site-specific water application.

Cloud computing and mobile applications are key to operationalizing these technologies for end-users. Farmers receive real-time notifications on their smartphones or web dashboards, enabling them to remotely monitor field conditions and control irrigation systems. Some advanced systems also include actuators that automatically turn on or off water pumps based on AI recommendations, making irrigation a fully automated process (Patel et al., 2020).

One of the most innovative developments is the use of **predictive analytics** and weather forecasting models. By analyzing meteorological data, AI systems can forecast rainfall and humidity, adjusting irrigation plans accordingly to avoid overwatering or water stress. In water-scarce regions, this capability is particularly valuable for water conservation.

Despite these technological strides, affordability and accessibility remain concerns, particularly for smallholder farmers in developing regions. However, open-source platforms, modular system designs, and government subsidies are helping bridge the digital divide. Public-private partnerships are also emerging as important drivers in scaling these innovations.

3. Comparative Benefits of AI-Integrated Irrigation over Traditional Methods

AI-integrated irrigation systems offer numerous benefits over traditional irrigation techniques, making them indispensable for modern agriculture. One of the most significant advantages is water-use efficiency. Traditional methods often result in the application of excessive water, leading to leaching, runoff, and nutrient loss. In contrast, AI-based systems ensure precise water delivery based on actual crop and soil requirements, thereby minimizing wastage and enhancing

water productivity (Jones, 2004).

AI systems also offer **cost savings** by reducing labor dependence. With automated scheduling and remote monitoring, farmers can manage large areas with minimal manual input. This is particularly important in regions experiencing labor shortages or rising labor costs. Additionally, reduced input usage—such as water and energy—translates into lower operational expenses (Smith et al., 2021).

Another critical benefit is **increased crop yield and quality**. Proper irrigation timing and quantity ensure that crops receive optimal hydration during critical growth stages, enhancing physiological processes like nutrient uptake, photosynthesis, and biomass accumulation. Field studies have shown yield improvements ranging from 10% to 25% when using AI-optimized irrigation schedules (Zhang et al., 2021).

From an environmental perspective, smart irrigation contributes to **sustainable resource management**. It reduces the risk of waterlogging, salinity buildup, and groundwater depletion—issues commonly associated with excessive irrigation. The data collected can also be used to assess long-term trends and improve overall farm management strategies.

Additionally, AI integration facilitates **climate-smart agriculture**. Adaptive systems can respond to erratic weather patterns, ensuring resilience against droughts or unseasonal rainfall. These capabilities are crucial in the context of climate change, where traditional knowledge alone may not suffice to navigate unpredictability.

While the advantages are compelling, challenges persist. These include the **digital literacy gap**, especially among older farmers, high setup costs, and the need for reliable internet and power infrastructure. Nonetheless, pilot programs and cooperative models are demonstrating that even small-scale farmers can benefit from AI-based systems when provided with adequate support and training.

In summary, AI-integrated irrigation offers a quantum leap in precision, efficiency, and sustainability compared to traditional systems. As the technology matures and becomes more accessible, its adoption is expected to accelerate globally.

4. Challenges and Future Directions

Despite the significant advancements in AI-integrated irrigation systems, several challenges hinder widespread adoption. One of the primary obstacles is the **high initial cost** of installation. Sensors,

controllers, and AI software—especially when bundled with satellite and drone services—require considerable investment. For smallholder farmers, this often proves prohibitive unless supported by government subsidies or cooperative models (Schroeder et al., 2020).

Another major challenge is the **lack of digital literacy and technical knowledge** among farmers, particularly in developing countries. Many farmers are unfamiliar with using smartphones, cloud-based dashboards, or interpreting data analytics. This gap necessitates the establishment of robust extension services and training programs that can facilitate skill development and promote user confidence.

Data security and privacy is another growing concern. With increased reliance on cloud platforms and remote servers, the risk of unauthorized data access and misuse has escalated. Regulatory frameworks and standardized protocols need to be developed to ensure data protection and user trust (Zhou et al., 2021).

Interoperability of systems poses a technical bottleneck. Many smart farming devices and software platforms operate in silos, making it difficult to integrate tools from different manufacturers. Open-source platforms and industry-wide standards are essential for seamless data flow and system compatibility.

Environmental variability adds another layer of complexity. AI models trained on specific regional data may not perform effectively in different agro-ecological zones unless re-calibrated. Hence, the development of localized AI models that account for soil type, crop variety, and climatic patterns is necessary.

Looking ahead, the future of AI in irrigation lies in the development of autonomous and self-learning systems. These systems would continually adapt based on environmental feedback, thereby reducing the need for manual calibration. Integration with blockchain for transparent water usage reporting and edge computing for real-time analytics are also emerging as promising innovations.

Policy interventions are critical for fostering innovation and adoption. Incentivizing research and development, creating public–private partnerships, and offering financial assistance to smallholders can accelerate the transition to smart irrigation.

In conclusion, while challenges remain, the future of AI-integrated irrigation is bright. Strategic

investments, inclusive policies, and technological innovation can collectively ensure that AI contributes to sustainable, resilient, and equitable agricultural growth.

5. Conclusion

The integration of artificial intelligence into irrigation systems marks a transformative shift in how agriculture is practiced, especially in the face of growing water scarcity and climate change. Alpowered systems enhance water-use efficiency, reduce operational costs, and improve crop yields, making them an essential tool for sustainable agriculture.

From the deployment of IoT sensors and machine learning algorithms to predictive analytics and remote automation, the advancements in AI have redefined precision irrigation. These technologies enable farmers to make data-driven decisions, reduce environmental impact, and increase resilience to climatic variability.

However, the benefits of AI-based irrigation systems are not without challenges. High installation costs, lack of digital infrastructure, limited farmer awareness, and concerns over data privacy present barriers to adoption. Addressing these issues through education, policy support, and affordable technological solutions is critical.

As we move toward a future where agriculture must be both productive and sustainable, AI-integrated irrigation systems stand out as a promising solution. With the right support and innovation, these systems can empower farmers, conserve natural resources, and help achieve global food and water security.

References

- FAO. (2017). *The future of food and agriculture Trends and challenges*. Food and Agriculture Organization of the United Nations.
- Gutiérrez, J., Villa-Medina, J. F., Nieto-Garibay, A., & Porta-Gándara, M. Á. (2014). Automated irrigation system using a wireless sensor network and GPRS module. *IEEE Transactions on Instrumentation and Measurement*, 63(1), 166–176.
- Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. *Artificial Intelligence in Agriculture*, 2, 1–12.
- Jones, H. G. (2004). Irrigation scheduling: Advantages and pitfalls of plant-based methods.

- Journal of Experimental Botany, 55(407), 2427–2436.
- Koech, R., & Langat, P. (2018). Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. *Water*, 10(12), 1771.
- Patel, K., Shah, R., Patel, D., & Shah, P. (2020). Smart irrigation system using IoT and AI. International Journal of Innovative Research in Science, Engineering and Technology, 9(5), 4105–4110.
- Schroeder, P., Anggraeni, K., & Weber, U. (2020). The relevance of circular economy practices to the sustainable development goals. *Journal of Industrial Ecology*, 23(1), 77–95.
- Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. *Remote Sensing*, 12(19), 3136.
- Smith, M., Jones, A., & Jackson, P. (2021). Precision irrigation for sustainable agriculture: A review. *Agricultural Water Management*, 255, 107014.
- Zhang, Y., Shen, Y., & Wang, H. (2021). Smart irrigation systems: A review. *Agricultural Water Management*, 248, 106803.
- Zhou, J., Jin, X., & Zhang, Y. (2021). Data privacy and security in smart agriculture: Challenges and future research directions. *Computers and Electronics in Agriculture*, 189, 106400

CHAPTER 10

Integrated Pest Management Strategies in Tomato (Solanum lycopersicum): A Sustainable Approach

Srijita Kolya, Ankita Maity, Richa Samanta and Tanmoy Sarkar

Department of Agriculture, School of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal, 700121

*Corresponding author: tanmoys@svu.ac.in

Abstract

Tomato (Solanum lycopersicum) stands as a globally significant horticultural crop, vital for both fresh consumption and processing industries, yet it faces substantial annual yield losses exceeding 30-40% due to a complex of insect pests, mites, and phytopathogens. The over-reliance on broadspectrum chemical pesticides, the primary control strategy for decades, has led to detrimental consequences including pest resistance, resurgence of secondary pests, harmful residues on produce, and degradation of environmental and human health. In response to these challenges, Integrated Pest Management (IPM) has emerged as the paradigm for sustainable crop protection. IPM is not a single pest control method but rather a holistic, knowledge-intensive strategy that integrates multiple, ecologically compatible tactics. This approach strategically combines biological control agents, cultural practices, the use of resistant cultivars, and judicious pesticide application to maintain pest populations below economically damaging thresholds while fostering a balanced agro-ecosystem. Recent advances in pest monitoring technologies, such as automated pheromone traps and remote sensing, have enhanced the precision of interventions, enabling early detection and targeted actions. Biological control, leveraging a suite of predators, parasitoids, and entomopathogenic microbial agents, has shown remarkable success in reducing dependency on synthetic chemicals. Furthermore, innovations in biopesticides derived from plant extracts and microorganisms, alongside novel RNA interference (RNAi)-based technologies, offer highly specific and environmentally benign solutions. The successful implementation of IPM extends beyond technical tools; it requires robust farmer education, community-based approaches, and supportive policy frameworks to ensure widespread adoption. A well-executed IPM program not only safeguards tomato yields and enhances fruit quality but also promotes soil health, conserves

biodiversity, and ensures the long-term economic and environmental sustainability of tomato production systems.

Keywords: Sustainable agriculture, Biological control, Integrated Pest Management (IPM), Solanum lycopersicum, Biopesticides, Pest Monitoring

1. Introduction

Tomato (Solanum lycopersicum L.) is one of the most extensively cultivated and consumed vegetable crops worldwide, playing a crucial role in human nutrition and agricultural economies. Despite its agricultural importance, tomato production is perpetually threatened by a wide array of pests, including the notorious tomato fruit borer (Helicoverpa armigera), whiteflies (Bemisia tabaci), aphids, leafminers, and mites, as well as a plethora of diseases which can be vectored by these insects, such as tomato leaf curl virus transmitted by B. tabaci (Mansfield et al., 2023). Historically, the management of these pests has been predominantly reliant on the calendar-based application of synthetic pesticides. This approach, while providing short-term control, has engendered a vicious cycle of problems including the rapid development of pesticide resistance in pest populations, the destruction of natural enemies leading to pest resurgence, the contamination of soil and water resources, and the accumulation of hazardous residues on the harvested fruit, posing significant risks to consumer health (Damalas & Eleftherohorinos, 2011). The inherent unsustainability of this chemical-centric model has catalyzed a global shift towards Integrated Pest Management (IPM), which was formally defined by the Food and Agriculture Organization (FAO) as "the careful consideration of all available pest control techniques and subsequent integration of appropriate measures that discourage the development of pest populations and keep pesticides and other interventions to levels that are economically justified and reduce or minimize risks to human health and the environment" (FAO, 2021). This manuscript provides a comprehensive overview of the core components and advanced strategies constituting a modern IPM program for tomato, emphasizing the synergistic integration of ecological principles with technological innovations to build resilient and productive cropping systems.

2. The Core Components of an IPM Program for Tomato

A successful IPM program for tomato is built upon a foundation of several interconnected components, each playing a critical role in achieving sustainable pest suppression. The first and

foremost step is regular monitoring and accurate pest identification, which forms the basis for all management decisions. This involves systematic scouting of fields to assess pest population densities and damage levels, increasingly aided by technological tools such as pheromone traps for specific insects like Helicoverpa armigera and Tuta absoluta, and yellow sticky traps for monitoring flying pests like whiteflies and aphids (Picanço et al., 2017). The data gathered from monitoring informs the use of action thresholds, which are scientifically determined pest population levels at which control measures must be initiated to prevent economic damage, thereby preventing unnecessary and costly pesticide applications. Alongside monitoring, cultural practices serve as the first line of defense by creating an environment less conducive to pest establishment and reproduction. These practices include crop rotation with non-host plants to break pest cycles, sanitation through the removal of crop residues and weeds that can harbor pests and diseases, adjusting planting dates to avoid peak pest pressure, and using reflective mulches which have been shown to repel aphids and whiteflies, thereby reducing the incidence of viral diseases they transmit (Stapleton et al., 2020). The use of host-plant resistance is another cornerstone of IPM, wherein tomato varieties bred for resistance or tolerance to key pests and diseases, such as those carrying the Ty genes for resistance against tomato yellow leaf curl virus, are deployed to inherently reduce the vulnerability of the crop (Ji et al., 2023). When pest populations exceed economic thresholds despite these foundational measures, biological control becomes a pivotal tool, involving the conservation and augmentation of natural enemies including predators like ladybird beetles and lacewings, parasitoids such as Trichogramma wasps for lepidopteran pests, and entomopathogenic fungi like Beauveria bassiana and bacteria like Bacillus thuringiensis (Bt) (van Lenteren, 2012). Only as a last resort, and with precision, are chemical pesticides employed, with a strong preference for those that are selective, have short residual activity, and are less harmful to nontarget organisms, ensuring the preservation of the established ecological balance within the agroecosystem.

3. Advances in Biological Control and Biopesticides

Biological control has evolved from a niche practice to a mainstream component of tomato IPM, with significant advances in both the understanding and application of beneficial organisms. The conservation and augmentation of native and introduced natural enemies have proven highly effective; for instance, the augmentative release of the egg parasitoid Trichogramma pretiosum

has become a standard practice in many greenhouse and open-field tomato production systems for managing the tomato fruit borer, achieving parasitism rates that can exceed 80% and drastically reducing the need for insecticide sprays (Parra et al., 2021). Similarly, the predatory mirid bug Macrolophus pygmaeus is widely used in protected cultivation across Europe to control whiteflies, aphids, and spider mites, demonstrating the efficacy of predator-in-first strategies. Concurrently, the development and commercialization of microbial biopesticides have expanded the arsenal of eco-friendly tools. Entomopathogenic fungi, such as Metarhizium anisopliae and Beauveria bassiana, are now formulated as bio-insecticides effective against a range of sap-sucking pests, while the bacterium Bacillus thuringiensis subsp. kurstaki remains a highly specific and safe larvicide for caterpillar pests (Lacey et al., 2015). Botanical pesticides, derived from plants like neem (Azadirachta indica), have also gained prominence for their antifeedant, growth-regulating, and oviposition-deterrent properties, with neem-based products being particularly effective against young larvae of lepidopteran pests and whitefly nymphs while being benign to most beneficial insects (Isman, 2020). These biopesticides offer a critical advantage by providing effective pest control without leaving toxic residues, thus aligning with consumer demand for safer food and facilitating the export of produce to markets with stringent maximum residue limits (MRLs).

4. Technological Innovations and Novel Approaches

The frontier of IPM is being continually pushed forward by technological innovations that enhance the precision, efficiency, and scope of pest management strategies. Remote sensing technology, utilizing drones and satellites equipped with multispectral and hyperspectral sensors, allows for the early detection of pest infestations and disease outbreaks by identifying subtle changes in plant reflectance patterns before they are visible to the naked eye, enabling spatially targeted interventions and preventing widespread damage (Zhang et al., 2019). At the molecular level, RNA interference (RNAi) technology presents a revolutionary approach for highly specific pest control. This strategy involves the application of double-stranded RNA (dsRNA) molecules that are designed to silence essential genes in the target pest upon ingestion, leading to its mortality or incapacitation. Research has demonstrated the potential of RNAi for controlling critical pests like the Colorado potato beetle and whiteflies, and its application in tomato, perhaps through topical sprays or engineered plant varieties, holds immense promise for the future (Zotti et al., 2018). Furthermore, the push for semiochemical-based management has grown stronger, with research

focusing not only on sex pheromones for mass trapping and mating disruption but also on the use of herbivore-induced plant volatiles (HIPVs) that attract the natural enemies of herbivores, effectively recruiting bodyguards for the crop (Turlings & Erb, 2018). The integration of these advanced technologies with traditional IPM components creates a sophisticated, knowledge-driven system that is both highly effective and minimally disruptive to the agro-ecosystem.

5. Implementation Challenges and the Path Forward

Despite its proven benefits and the availability of effective tools, the widespread adoption of IPM in tomato cultivation, particularly among smallholder farmers in developing countries, faces several significant challenges. A primary barrier is the knowledge-intensive nature of IPM, which requires a deep understanding of pest biology, ecology, and the interactions between different control tactics, a level of expertise that is often lacking where extension services are underresourced (Parsa et al., 2014). The perceived complexity and higher initial cost of certain biological inputs or monitoring equipment can also deter farmers who are accustomed to the simplicity and immediate, albeit short-lived, efficacy of chemical pesticides. Moreover, the benefits of IPM, such as improved ecosystem health and reduced resistance development, are often long-term and diffuse, while the costs and risks are immediate and borne directly by the farmer. To overcome these hurdles, a multi-faceted approach is essential. This includes strengthening agricultural extension systems to provide hands-on training and continuous support to farmers, developing and promoting low-cost monitoring and biocontrol technologies that are accessible to smallholders, and implementing policy incentives such as subsidies for biopesticides or premium prices for IPMcertified produce (Pretty & Bharucha, 2015). Ultimately, the successful transition to IPM requires a paradigm shift from viewing pest control as a problem of eradication to one of ecological management. By fostering farmer participation, encouraging community-based IPM initiatives, and building supportive market and policy environments, the full potential of Integrated Pest Management can be realized, securing the productivity, profitability, and sustainability of global tomato production for generations to come.

6. Conclusion

Integrated Pest Management represents the most rational and sustainable pathway for addressing the complex pest challenges in tomato cultivation. By moving beyond a reliance on a single control method, IPM leverages a synergistic combination of monitoring, cultural practices, host plant resistance, biological control, and targeted chemical use to manage pests in an economically and ecologically sound manner. The continued advancement and integration of innovative tools—from remote sensing and RNAi technology to novel biopesticides and enhanced biocontrol agents—further strengthen the IPM framework, making it more precise and effective. The journey towards full adoption requires concerted efforts in farmer education, research, and policy support to overcome existing barriers. Embracing IPM is not merely a technical choice but a commitment to a farming philosophy that values environmental health, human safety, and long-term agricultural resilience. As the global demand for safe and sustainably produced food continues to rise, the implementation of robust IPM strategies in tomato and other crops will be indispensable for building a secure and sustainable food system.

Reference

- Damalas, C. A., & Eleftherohorinos, I. G. (2011). Pesticide exposure, safety issues, and risk assessment indicators. International Journal of Environmental Research and Public Health, 8(5), 1402–1419. https://doi.org/10.3390/ijerph8051402
- Food and Agriculture Organization (FAO). (2021). Integrated Pest Management. FAO. Retrieved from https://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/ipm/en/
- Isman, M. B. (2020). Botanical insecticides in the twenty-first century—fulfilling their promise? Annual Review of Entomology, 65, 233–249. https://doi.org/10.1146/annurev-ento-011019-025010
- Ji, Y., Scott, J. W., Hanson, P., Graham, E., & Maxwell, D. P. (2023). Tomato yellow leaf curl virus resistance in tomato: A review of the genetics and breeding. Plants, 12(4), 895. https://doi.org/10.3390/plants12040895
- Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, 132, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
- Mansfield, S., Johnson, S. N., & Murray, D. A. (2023). Global pest incidence and epidemiology in tomato crops: A review. Annals of Applied Biology, 182(1), 1-17. https://doi.org/10.1111/aab.12810

- Parra, J. R. P., Coelho, A., & Zucchi, R. A. (2021). Trichogramma as a tool for IPM in Brazil: Advances and perspectives. Insect Science, 28(1), 1-14. https://doi.org/10.1111/1744-7917.12845
- Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., ... & Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences, 111(10), 3889–3894. https://doi.org/10.1073/pnas.1312693111
- Picanço, M. C., Bacci, L., Queiroz, R. B., Silva, G. A., & Moura, M. F. (2017). Economic injury levels and sequential sampling plans for insect pests of tomato. Journal of Applied Entomology, 141(1-2), 1-11. https://doi.org/10.1111/jen.12345
- Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects, 6(1), 152–182. https://doi.org/10.3390/insects6010152
- Stapleton, J. J., Summers, C. G., & Mitchell, J. P. (2020). Mulches for management of insect vectors of plant viruses. In Sustainable Management of Arthropod Pests of Tomato (pp. 245-262). Academic Press.
- Turlings, T. C. J., & Erb, M. (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: Mechanisms, ecological relevance, and application potential. Annual Review of Entomology, 63, 433–452. https://doi.org/10.1146/annurev-ento-020117-043507
- van Lenteren, J. C. (2012). The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl, 57(1), 1–20. https://doi.org/10.1007/s10526-011-9395-1
- Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., & Huang, W. (2019).
 Monitoring plant diseases and pests through remote sensing technology: A review.
 Computers and Electronics in Agriculture, 165, 104943.
 https://doi.org/10.1016/j.compag.2019.104943
- Zotti, M., dos Santos, E. A., Cagliari, D., Christiaens, O., Taning, C. N. T., & Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, 74(6), 1239–1250. https://doi.org/10.1002/ps.4813

CHAPTER 11

Biopesticides: A Sustainable Solution for Modern Agriculture

Soumabrata Dutta, Subham Dutta and Rakesh Das

School of Agriculture, Swami Vivekananda University, Barrackpore 700121, West Bengal, India

*Corresponding author: rakeshd@svu.ac.in

Abstract

Biopesticides, derived from natural materials such as plants, bacteria, fungi, and minerals, have emerged as a pivotal and sustainable alternative to synthetic chemical pesticides in modern agriculture. Their increasing adoption is driven by the urgent need to address the multifaceted challenges posed by conventional pesticides, including environmental pollution, harm to nontarget organisms, the evolution of pest resistance, and risks to human health. Biopesticides play a central role in integrated pest management (IPM) frameworks by providing environmentally benign solutions to control a wide array of pests and diseases, thereby reducing dependency on synthetic chemicals and mitigating their adverse ecological impacts. The category of biopesticides encompasses microbial agents (e.g., Bacillus thuringiensis, Trichoderma spp.), botanical extracts (e.g., neem oil, pyrethrins), and biochemical pesticides (e.g., insect pheromones, plant growth regulators), each offering distinct advantages such as high target specificity, inherent biodegradability, and very low toxicity to mammals and beneficial insects. The adoption of biopesticides aligns seamlessly with the core principles of sustainable agriculture by actively preserving biodiversity, enhancing soil health, and minimizing hazardous pesticide residues in food and water systems. Furthermore, they support regulatory compliance with the increasingly stringent environmental and food safety standards being implemented globally. Despite their considerable potential, challenges such as variable efficacy under diverse field conditions, a typically shorter shelf life, and often higher initial production costs currently hinder their widespread adoption. However, ongoing advances in biotechnology, fermentation processes, novel formulation techniques, and supportive policy frameworks are crucial for scaling up their production, improving field reliability, and integrating them into mainstream agricultural practices. This paper highlights the growing importance of biopesticides, emphasizing their indispensable role in promoting a more resilient and sustainable agricultural system while critically addressing the existing limitations and future opportunities for their broader application.

Keywords: Biopesticides, Integrated Pest Management (IPM), Sustainable agriculture,

1. Introduction

The global agricultural sector stands at a critical juncture, tasked with the immense challenge of ensuring food security for a growing population while simultaneously mitigating its environmental footprint. For decades, synthetic chemical pesticides have been the cornerstone of pest management, successfully curbing crop losses and boosting yields. However, their over-reliance has precipitated a cascade of negative consequences, including widespread contamination of soil and water resources, devastating impacts on non-target organisms such as pollinators and natural predators, the rapid evolution of pesticide-resistant pest strains, and growing public health concerns due to toxic residues in food (Sharma et al., 2019). This has created an urgent imperative to transition towards more sustainable and ecologically balanced pest management strategies. In this context, biopesticides have surged to the forefront as a viable and promising solution. Defined as mass-produced, biologically based agents used for the control of plant pests, biopesticides are derived from natural materials and represent a paradigm shift from broad-spectrum chemical control to targeted, bio-rational management (Damalas & Koutroubas, 2024). Their integration into modern agriculture is not merely a return to traditional practices but a sophisticated application of biological and ecological principles, powered by contemporary scientific innovation. This manuscript aims to provide a comprehensive overview of the role of biopesticides in sustainable agriculture. It will explore their diverse categories and modes of action, elucidate their strategic position within Integrated Pest Management (IPM) programs, and critically evaluate their multifaceted benefits for ecosystem health and food safety. Furthermore, it will address the significant challenges that currently limit their universal adoption and discuss the future technological and policy directions essential for unlocking their full potential to create a more resilient and sustainable global food system.

2. Categories and Modes of Action of Biopesticides

Biopesticides are a highly diverse group of products, generally classified into three main categories based on their source and nature, each with distinct and often complex modes of action. The first and largest category is microbial pesticides, which consist of microorganisms as the active ingredient, including bacteria, fungi, viruses, and protozoa. A quintessential example is Bacillus

thuringiensis (Bt), a soil-dwelling bacterium that produces protein crystals toxic to specific insect larvae upon ingestion, causing gut paralysis and death, yet remaining harmless to humans, wildlife, and most beneficial insects (Bravo et al., 2011). Other prominent microbial agents include entomopathogenic fungi like Beauveria bassiana and Metarhizium anisopliae, which infect pests by penetrating their cuticle, and beneficial fungi such as Trichoderma spp., which act through mycoparasitism, competition, and induction of systemic resistance in plants against fungal pathogens (Woo et al., 2014). The second major category is biochemical pesticides, which are naturally occurring substances that control pests by non-toxic mechanisms. This group includes insect sex pheromones that disrupt mating by confusing males, various plant growth regulators, and insect growth regulators that interfere with molting and development. Unlike conventional insecticides, they do not directly kill the pest but rather manipulate its behavior or physiology (Copping & Menn, 2000). The third category comprises plant-incorporated protectants (PIPs) and botanical pesticides. PIPs are pesticidal substances that plants produce after genetic material from a biopesticide, such as Bt genes, has been incorporated into their own genetic material. Botanical pesticides, on the other hand, are derived directly from plant extracts; neem oil from Azadirachta indica, with its active component azadirachtin, is a renowned example that acts as an antifeedant, repellent, and insect growth regulator, while pyrethrins extracted from chrysanthemum flowers act as potent nerve toxins but degrade rapidly in the environment (Isman, 2020). This diversity in origin and mechanism allows for highly specific and ecologically nuanced pest control strategies.

3. The Integral Role of Biopesticides in Integrated Pest Management (IPM)

Integrated Pest Management (IPM) is a holistic ecosystem-based strategy that focuses on long-term prevention of pests or their damage through a combination of techniques, and biopesticides are fundamentally aligned with its core philosophy of balancing economic, environmental, and health concerns. Within an IPM framework, biopesticides are not intended to be a like-for-like replacement for synthetic chemicals but are deployed as strategic tools to enhance the system's overall resilience and sustainability. Their primary role is to provide effective pest control while preserving and augmenting the activity of beneficial organisms, which are often decimated by broad-spectrum insecticides (Pretty & Bharucha, 2015). For instance, the application of a highly specific Bt formulation can target a caterpillar pest outbreak without harming the predatory ladybugs or parasitic wasps that provide long-term, natural suppression. Furthermore, many

biopesticides, particularly microbial agents like Trichoderma and certain botanicals, function as inducers of systemic acquired resistance (SAR) in plants, effectively "vaccinating" the crop and enabling it to better defend itself against subsequent pest and disease attacks (Romero et al., 2018). Biopesticides also serve as crucial tools for resistance management; by introducing modes of action that are different from those of synthetic chemicals, they can be rotated or mixed with conventional pesticides to delay the development of resistance in pest populations, thereby prolonging the useful life of all pest control products (Sparks & Nauen, 2015). The use of semiochemicals, such as pheromones for mating disruption, is another elegant IPM tactic that relies on biopesticides to prevent successful reproduction of pests without any direct chemical contact with the crop or the environment. This synergistic integration allows growers to maintain pest populations below economically damaging levels while minimizing the negative externalities associated with intensive pesticide use.

4. Benefits for Environmental Sustainability and Human Health

The adoption of biopesticides confers a multitude of benefits that extend far beyond the immediate control of a target pest, profoundly impacting environmental sustainability, ecosystem services, and public health. A paramount advantage is their target specificity, which drastically reduces collateral damage to non-target organisms, including vital pollinators like bees, natural pest predators, and soil microfauna essential for nutrient cycling. This preservation of biodiversity is critical for maintaining robust and self-regulating agroecosystems (Lacey et al., 2015). Unlike their synthetic counterparts, which can persist in the environment for years and leach into groundwater, most biopesticides are inherently biodegradable, breaking down quickly into harmless byproducts and thus alleviating the problems of soil and water contamination (Mosa et al., 2018). From a human health perspective, biopesticides generally exhibit very low mammalian toxicity, which translates to significantly reduced risks for farmers during application and for consumers due to minimal pesticide residues on food products, helping to ensure compliance with increasingly strict Maximum Residue Limits (MRLs) in both domestic and international markets (Damalas & Koutroubas, 2024). Moreover, by providing effective, biologically based tools, biopesticides help break the cycle of pesticide resistance, which is a major driver of increased application rates and frequency, leading to further environmental loading. The use of certain biopesticides, particularly those containing beneficial microbes, can also contribute to improved soil health by introducing or enhancing populations of organisms that contribute to nutrient solubilization, organic matter decomposition, and the suppression of soil-borne diseases, thereby fostering a more fertile and resilient growing medium (O'Brien, 2017). Collectively, these attributes make biopesticides a cornerstone technology for the development of agricultural systems that are not only productive but also environmentally sound and socially responsible.

5. Challenges and Limitations to Widespread Adoption

Despite their compelling benefits and significant market growth, the widespread adoption of biopesticides faces several substantial challenges that hinder their displacement of conventional synthetic pesticides. One of the most frequently cited limitations is their perceived variable efficacy under field conditions. The performance of microbial and biochemical agents is often highly dependent on specific environmental factors such as temperature, humidity, UV radiation, and rainfall, which can lead to inconsistent results compared to the more robust and predictable performance of many synthetic chemicals (Glare et al., 2016). This variability can erode farmer confidence, particularly in the absence of clear application guidelines tailored to local conditions. A second major challenge is the inherently shorter shelf life of many biopesticide formulations. Living microbial agents can lose viability over time, and many botanical extracts are susceptible to degradation, necessitating sophisticated formulation technology and robust supply chains to ensure product potency reaches the end-user (Fravel, 2005). Furthermore, the high cost of research, development, and registration, coupled with often complex and expensive fermentation-based production processes, can make biopesticides more expensive per unit than their synthetic counterparts, creating an economic barrier for farmers, especially smallholders in developing countries (Parsa et al., 2014). The narrow target spectrum of many biopesticides, while an environmental advantage, can also be a practical limitation in situations where a complex of multiple pests requires control, potentially necessitating the use of several different biopesticide products. Finally, a significant hurdle is the lack of awareness and technical knowledge among farmers and extension agents regarding the correct selection, timing, and application methods required to achieve optimal results with biopesticides, as their use often demands a deeper understanding of pest and pathogen biology than conventional calendar-based spraying (Kumar & Singh, 2015). Overcoming these barriers is essential for biopesticides to realize their full market and ecological potential.

6. Future Perspectives and Conclusion

The future trajectory of biopesticides is intrinsically linked to continued innovation in biotechnology, supportive policy frameworks, and the growing market demand for sustainably produced food. Advancements in microbial genomics and fermentation technology are paving the way for the discovery of novel microbial strains with enhanced virulence, broader host ranges, and greater environmental resilience, while also driving down production costs (Köhl et al., 2019). Similarly, sophisticated formulation technologies, including microencapsulation and the use of UV protectants, are being developed to improve the stability, shelf life, and field performance of biopesticide products. The emerging field of RNA interference (RNAi) holds immense promise, with the potential to develop highly specific biopesticides that can silence essential genes in target pests through sprayable dsRNA formulations, offering a new mode of action for resistance management (Zotti et al., 2018). From a policy perspective, governments and international agencies can play a transformative role by streamlining the registration process for low-risk biopesticides, providing subsidies for their adoption, and investing in public extension services to educate farmers on their benefits and application (Pretty & Bharucha, 2015). As consumer awareness and demand for organic and residue-free produce continue to rise, the market pull for biopesticides will strengthen, encouraging further private sector investment. In conclusion, biopesticides represent a critical and sustainable solution for the future of agriculture. They are not a panacea, but rather an essential component of a diversified and intelligent pest management toolkit. By mitigating the environmental and health costs associated with synthetic pesticides and supporting the principles of IPM, biopesticides are indispensable for the transition towards agricultural systems that are productive, profitable, and in harmony with the planet. The collective efforts of researchers, industry, policymakers, and farmers are crucial to overcome existing challenges and fully integrate these powerful biological tools into the mainstream of modern agriculture.

Reference

Bravo, A., Likitvivatanavong, S., Gill, S. S., & Soberón, M. (2011). Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochemistry and Molecular Biology, *41*(7), 423–431. https://doi.org/10.1016/j.ibmb.2011.02.006

Copping, L. G., & Menn, J. J. (2000). Biopesticides: A review of their action, applications and

- efficacy. Pest Management Science, *56*(8), 651–676. https://doi.org/10.1002/1526-4998(200008)56:8<651::AID-PS201>3.0.CO;2-U
- Damalas, C. A., & Koutroubas, S. D. (2024). Current status and recent developments in biopesticide use. Agriculture, *14*(2), 310. https://doi.org/10.3390/agriculture14020310
- Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, *43*, 337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924
- Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., Marrone, P., Morin, L., & Stewart, A. (2016). Have biopesticides come of age? Trends in Biotechnology, *34*(10), 791–802. https://doi.org/10.1016/j.tibtech.2016.06.002
- Isman, M. B. (2020). Botanical insecticides in the twenty-first century—fulfilling their promise?

 Annual Review of Entomology, *65*, 233–249. https://doi.org/10.1146/annurev-ento-011019-025010
- Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, *10*, 845. https://doi.org/10.3389/fpls.2019.00845
- Kumar, S., & Singh, A. (2015). Biopesticides: Present status and the future prospects. Journal of Fertilizers & Pesticides, *6*(2), 1000e129. https://doi.org/10.4172/2471-2728.1000e129
- Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M., & Goettel, M. S. (2015). Insect pathogens as biological control agents: Back to the future. Journal of Invertebrate Pathology, *132*, 1–41. https://doi.org/10.1016/j.jip.2015.07.009
- Mosa, A. A., El-Ghamry, A. M., & Tolba, M. E. (2018). Biopesticides: A green approach towards agricultural pests. Applied Environmental Soil Science, *2018*, 1-7. https://doi.org/10.1155/2018/4670435
- O'Brien, P. A. (2017). Biological control of plant diseases. Australasian Plant Pathology, *46*(4), 293–304. https://doi.org/10.1007/s13313-017-0481-4
- Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C. B., Condori, B., Crespo-Pérez, V., Hobbs, S. L. A., Kroschel, J., Ba, M. N., Rebaudo, F., Sherwood, S. G., Vanek, S. J., Faye, E., Herrera, M. A., & Dangles, O. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences, *111*(10), 3889–3894. https://doi.org/10.1073/pnas.1312693111
- Pretty, J., & Bharucha, Z. P. (2015). Integrated pest management for sustainable intensification of

- agriculture in Asia and Africa. Insects, *6*(1), 152–182. https://doi.org/10.3390/insects6010152
- Romero, D., Rivera, M. E., Cazorla, F. M., de Vicente, A., & Pérez-García, A. (2018). Biological control of plant diseases by microorganisms. In Current Developments in Biotechnology and Bioengineering (pp. 263-286). Elsevier.
- Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, *1*(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
- Sparks, T. C., & Nauen, R. (2015). IRAC: Mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, *121*, 122–128. https://doi.org/10.1016/j.pestbp.2014.11.014
- Woo, S. L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., & Lorito, M. (2014). Trichoderma-based products and their widespread use in agriculture. The Open Mycology Journal, *8*(1), 71–126. https://doi.org/10.2174/1874437001408010071
- Zotti, M., dos Santos, E. A., Cagliari, D., Christiaens, O., Taning, C. N. T., & Smagghe, G. (2018). RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Management Science, *74*(6), 1239–1250. https://doi.org/10.1002/ps.4813